Elimination Reactions To Form Alkenes

from chapter(s)	in the recommended tex
-----------------	------------------------

A. Introduction

B. E1 Mechanisms

protonated intermediate

carbocation intermediate

alkene product

Kinetics

[^tBuOH] rate is proportional to k [¹BuOH] rate =

Carbocation Stability

Rates of E1 reactions tend to *increase*

most stable least stable

`Br

fastest slowest

Bredt's Rule

 sp^3 so it has ideal dihedral angles of about 109

the same

<u>more</u>

is not

adamantane

adamantane cation

adamantene

are not favorable.

transition state

product
(show stereochemistry)

reaction progress

Kinetics

rate is proportional to [DCHBrCH₂Ph] [OH-]

rate = $k [DCHBrCH_2Ph] [OH-]$

doubles

Stereoselectivity <u>different</u> <u>perpendicular</u>.

ĊI

EtĊl

.... can be represented as

$$\begin{array}{c} \text{OMs} \\ \text{Ph} & \text{CH}_3 \\ \text{H} & \text{CH}_3 \end{array}$$

base

complete Newman , projection

show alkene product

.... can be

base

complete Newman projection

show alkene product

Show structures for:

mesyl group, -OMs

tosyl group, -OTs

 NH_3

MeO-

D. Factors That Favor E1, E2, S_N1 , or S_N2

Basicity vs Nucleophilicity

E2 relative to E1 reactions and it will tend to favor E2

ŀ

- E2 relative to E1 favor E1 (ii)
- (iii) will not will not
- $S_N 2$ relative to $S_N 1$ $S_N 2$ (iv)

increases

CN-

Nucleophilicity

- $\underline{S_{N1}}$ relative to $\underline{S_{N2}}$ reactions; and, (i)
- E1 over E2 (ii)
- <u>S_N2</u> relative to <u>S_N1</u> reactions; (i)
- E2 over E1 reactions. (ii)

 $N_3^ H_2O$ most nucleophilc least nucleophilic OH-CI-PhO- $NH_2^ NH_3$ H_2O

CI-

least basic most basic

Temperature (and Entropy)

 $\underline{\underline{E2}}$ and $\underline{\underline{S_{N}2}}$ over $\underline{\underline{E1}}$ and $\underline{\underline{S_{N}1}}$.

$$\Delta G^{\#} = \Delta H^{\#}$$
 - $T\Delta S^{\#}$

 $\underline{E2}$ and $\underline{S_N2}$ over $\underline{E1}$ and $\underline{S_N1}$ reactions. $\underline{E1}$ and $\underline{S_{N1}}$ over $\underline{E2}$ and $\underline{S_{N2}}$ reactions.

E. E1cB

FMOC

carbamates.

anionic intermediate

product (methyl phenylalanine)

<u>14</u> πe, <u>aromatic</u>.

F. Eliminations To Give Allenes, Alkynes, Ketenes And Sulfenes

sulfene ketene

ketene alkyne

alkyne alkyne