S_N2 Displacement At sp³ Centers | from chapter(s) | in the recommended text | |-----------------|-------------------------| | | | # A. Introduction # B. Differentiating S_N1 and S_N2 <u>replaces another</u> and <u>with second order kinetics</u>. S_N2 processes whereas S_N1 <u>S_N2</u> pathways. feature $S_N 1$ mechanisms. ## Stereochemical Inversion In S_N2 Reactions <u>Transition states</u> in S_N2 displacement processes have geometries that resemble trigonal bipyramidal shapes. <u>S_B2</u>. <u>S_G1</u> ## Kinetics And S_N2 Pathways product plus by-product doubles accelerated *more* less. ## C. Interconversion Of Enantiomers And Diastereomers ## **Conversion Of Alcohols Into Leaving Groups** Hydroxyl groups are not <u>better</u> ⁿbutyl mesylate ⁱpropyl mesylate cyclohexyl tosylate sbutyl tosylate Mesylates and tosylates are <u>better</u> <u>retention</u> of configuration inversion stereochemistry. #### <u>S_N1</u>. specific rotation = -42° product of one S_N1 and one S_N2 reaction ### **Stereoelectronic Effects** S_N2 reactions transition state <u>LUMO</u> on HOMO. the empty p-orbital of the carbocation. <u>LUMO</u> HOMO. $\underline{\sigma}^*$ orbital. draw C - I σ^* -orbitals and orientation of $S_N 2$ displacement by CN- # D. A Little Synthetic Chemistry For Chemistry Majors Cyanide: A Useful C-Nucleophile $$rac{CN^{-}}{-Br^{-}}$$ $rac{CN^{-}}{O}$ $rac{H_{3}O^{+}}{O}$ This type of transformation (nitrile displacement then hydrolysis) works for 4-MeOC₆H₄I allyl bromide / vinyl iodide ## Phthalimide: Useful N-Nucleophile For Syntheses Of Primary Amines primary amines **Gabriel** synthesis is a **better**