S_N2 Displacement At sp³ Centers

from chapter(s)	in the recommended text

A. Introduction

B. Differentiating S_N1 and S_N2

<u>replaces another</u> and <u>with second order kinetics</u>.

 S_N2 processes whereas S_N1

<u>S_N2</u> pathways.

feature $S_N 1$ mechanisms.

Stereochemical Inversion In S_N2 Reactions

<u>Transition states</u> in S_N2 displacement processes have geometries that resemble trigonal bipyramidal shapes.

<u>S_B2</u>. <u>S_G1</u>

Kinetics And S_N2 Pathways

product plus by-product

doubles

accelerated

more

less.

C. Interconversion Of Enantiomers And Diastereomers

Conversion Of Alcohols Into Leaving Groups

Hydroxyl groups are not

<u>better</u>

ⁿbutyl mesylate

ⁱpropyl mesylate

cyclohexyl tosylate

sbutyl tosylate

Mesylates and tosylates are <u>better</u> <u>retention</u> of configuration inversion stereochemistry.

<u>S_N1</u>.

specific rotation = -42°

product of one S_N1 and one S_N2 reaction

Stereoelectronic Effects

S_N2 reactions transition state

<u>LUMO</u> on HOMO.

the empty p-orbital of the carbocation.

<u>LUMO</u> HOMO.

 $\underline{\sigma}^*$ orbital.

draw C - I σ^* -orbitals and orientation of $S_N 2$ displacement by CN-

D. A Little Synthetic Chemistry For Chemistry Majors

Cyanide: A Useful C-Nucleophile

$$rac{CN^{-}}{-Br^{-}}$$
 $rac{CN^{-}}{O}$ $rac{H_{3}O^{+}}{O}$

This type of transformation (nitrile displacement then hydrolysis) works for 4-MeOC₆H₄I allyl bromide / vinyl iodide

Phthalimide: Useful N-Nucleophile For Syntheses Of Primary Amines

primary amines **Gabriel** synthesis is a **better**