Curly Arrows And Electron Flow

A. Introduction

B. Electron Flow

<u>double-headed</u> arrow. <u>are,</u> <u>high</u> electron density.

<u>never</u>

Effecting Only One Bond heterolytic

<u>need not be</u> <u>possible</u>

<u>does not</u> <u>must</u> equal the number of anions. <u>2</u> e; this <u>sometimes</u>

is <u>less</u> <u>towards</u> Y.

Effecting Two Bonds

disfavored

favored if X is more basic than Y

C. Representations Of Charged Hydrocarbon Scaffolds

sp³ hybridized carbon the resulting anion is <u>sp³</u> hybridized. electrons move *towards C* and the resulting anion is <u>sp²</u> hybridized. <u>sp</u>-Hybridized carbanions

A sp³-hybridized carbon has $__4___$ tend to be <u>sp²</u> hybridized.

<u>sp</u>² hybridized, and carbanions C⁻R₃ are <u>sp</u>³-hybridized. Explain why this is so by considering the number of electrons around carbon in C⁺H₃ and in C⁻H₃.

Carbon in C^*R_3 has to accommodate *three atoms* containing *six* shared electrons around it.

Carbon in C⁻H₃ has to accommodate *three atoms and one lone pair* containing *eight* shared electrons around it.

D. Heteroatoms, Lone Pairs, And Moving Electrons

<u>*is not*</u> a change in the gives sp^3 hybridized protonated

 \underline{sp}^2 hybridized protonated heteroatoms become \underline{sp} hybridized protonated heteroatoms. Conversely, there <u>can</u> be

<u>usually</u>

