Saturated Acyclic Hydrocarbons

from chapter(s) _____ in the recommended text

A Introduction

B Conformations Of Acyclic Hydrocarbons

Ethane

staggered

eclipsed

H `н

Η. `H

Н H.

staggered

eclipsed

staggered

eclipsed

that repulsion is called *torsional* strain.

molecular orbital diagrams to indicate *destabilizing* interactions and *stabilizing* interactions

 σ -orbital contributes 2 e an empty one donates 0 e

add electrons to the diagrams below and indicate bond orders:

staggered

eclipsed

Butane

Destabilization of butane in the totally eclipsed conformation is a result of combinations of *torsional / steric* strain.

Steric strain between the methyl groups in butane is that which results when atoms compete for the same region of space.

C Art In Organic Chemistry

Two Dimensional Diagrams Of Organic Molecules is one bond to an apex that {terminal point} represents CH_3 two bonds to an apex means it is a CH_2 three bonds to a branch point represent CH. this means there are 0 hydrogen atoms on that carbon.

Zigzag conformations represent staggered conformers

it does not matter if the chains zigzag

ideal bond (*H*-*C*-*H*) angles for sp³-hybridized carbons $\sim 109^{\circ}$

has **4** bonds to other atoms.

carbon atoms in organic structures *always* have *C*-atoms in common organic molecules *never*

hybridization state of the carbons in the above molecules is sp^3 because they have 4 atoms attached.

corners of a *tetrahedral* shape ideally about <u>109</u>°

$$\downarrow$$
 \checkmark >

35

2,2-dimethylpentane

2,2-dimethylpropane

2,2-dimethylbutane

СН₃ Н₃С-С-СН₃ СН₃

Three Dimensional Diagrams Of Organic Molecules

Alkyl Fragments

In Acyclic Hydrocarbons

carbon connected to three hydrogens is called a *methyl* Methylene fragments (of molecules) are those that have CH_2 connected Methine is the name given to CH fragments CH_3 connected to anything is called a *methyl* A guaternary *C* has *0* hydrogen

C1, C7, C8 methyl C2, C3, C6 methylene C4 = methine

removed and replaced with something else ie substituted

represented as CH₃, Me

represented as CH₃CH₂, Et

ethyl group *cannot* be isolated and put in a bottle; it *is not* a discrete compound, but it *is* a molecular fragment

the fragment *is* attached to something else

Propane contains 2 types of gives *different* outcomes chain gives *a normal* propyl represented as *MeCH*₂*CH*₂, *EtCH*₂, *"Pr* a(n) *iso*- propyl group can be represented as ^{*i*}*Pr*, *(CH*₃) ₂*CH*

propane

n-propyl

butane

n-butyl

3 types of hydrogen

butyl chain gives a *normal* butyl group represented as *MeCH*₂*CH*₂*CH*₂, *ⁿPrCH*₂, *CH*₃*CH*₂*CH*₂*CH*₂

a(n) sec butyl group represented as CH₃CH₂CHCH₃

2-Methylpropane is an *isomer* of butane: it has <u>2</u> chemically inequivalent hydrogen *ie* a ^{*i*}*Bu* group.

name functional groups as alcohol, amine, ether, or thioether on the dashed lines

D Conclusion

These *are* zigzag conformations.

heptane decane pentane hexane

linear hydrocarbons can be represented