Reactivities Of Acylation Agents | from chapter(s) | in the recommended te | X | |-----------------|-----------------------|---| | | | | # A. Introduction # **B. Acylation Reactions** **RCO** # C. pH Dependence #### **Acylations Under Basic Conditions** readily receive displaced does good (eg OMe⁻) bad (eg Cl). Cl⁻, NO₃⁻, HSO₄⁻, H₂O, Br⁻ (add some more) Me₂N, HO, HS, OMe, CN (add some) most methyl benzoate #### tetrahedral ## moderately more benzoyl chloride tetrahedral intermediate # **Acylations Under Acidic Conditions** increases $$-Y^ +O^2H$$ H_2O $-H^+$ R Nu # D. Reactivities Of Acylation Agents #### **Chemical Intuition** unreactive. reactive activate reactive cannot less more retard unfavorable faster # **Molecular Orbital Description Of Acylation** a b increase *lower* its LUMO energy. reactive low energy LUMOs. *more* stable less reactive high good lower excellent # **Relative Reactivities Of Functional Groups In Acylation Reactions** Carbonyl Halides (Acid Halides) Are Hot #### basic acid conditions. # Carboxylic Acid Anhydrides Are Very Reactive lower excellent leaving groups. #### under basic conditions #### under acidic conditions 2 carboxylic an electrophile carboxylate leaving group. ### Esters Are Not Very Reactive raises inferior under basic conditions under acidic conditions ester hydrolysis transesterification do not tend ## Thioesters, Gentle Chemoselective Acylating Agents better less under basic conditions tetrahedral intermediate #### under acidic conditions ### Amides, Poor Acylating Agents worse poor more #### under basic conditions #### tetrahedral intermediate #### under acidic conditions #### Carboxylic Acids Are Not Acylating Agents (pKa = 3 - 5) ### extremely basic and a very poor ## Synopsis cannot $$X = OAc OMe O NH_2 Cl OPh$$ NH_2 OMe CI OPh O-OAc most reactive least reactive most reactive least reactive