Reactivities Of Acylation Agents

from chapter(s)	in the recommended te	X

A. Introduction

B. Acylation Reactions

RCO

C. pH Dependence

Acylations Under Basic Conditions

readily receive displaced

does good (eg OMe⁻) bad (eg Cl).

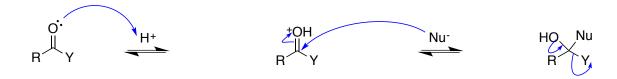
Cl⁻, NO₃⁻, HSO₄⁻, H₂O, Br⁻ (add some more)

Me₂N, HO, HS, OMe, CN (add some)

most

methyl benzoate

tetrahedral


moderately more

benzoyl chloride

tetrahedral intermediate

Acylations Under Acidic Conditions

increases

$$-Y^ +O^2H$$
 H_2O
 $-H^+$
 R
 Nu

D. Reactivities Of Acylation Agents

Chemical Intuition

unreactive.

reactive

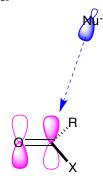
activate

reactive

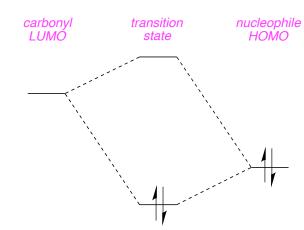
cannot

less

more


retard

unfavorable


faster

Molecular Orbital Description Of Acylation

a

b

increase *lower* its LUMO energy. reactive low energy LUMOs. *more* stable less reactive

high good

lower excellent

Relative Reactivities Of Functional Groups In Acylation Reactions

Carbonyl Halides (Acid Halides) Are Hot

basic

acid conditions.

Carboxylic Acid Anhydrides Are Very Reactive

lower

excellent leaving groups.

under basic conditions

under acidic conditions

2 carboxylic an electrophile carboxylate leaving group.

Esters Are Not Very Reactive

raises inferior

under basic conditions

under acidic conditions

ester hydrolysis transesterification

do not tend

Thioesters, Gentle Chemoselective Acylating Agents better

less

under basic conditions

tetrahedral intermediate

under acidic conditions

Amides, Poor Acylating Agents

worse

poor

more

under basic conditions

tetrahedral intermediate

under acidic conditions

Carboxylic Acids Are Not Acylating Agents

(pKa = 3 - 5)

extremely basic and a very poor

Synopsis

cannot

$$X = OAc OMe O NH_2 Cl OPh$$

 NH_2 OMe CI OPh O-OAc

most reactive least reactive

most reactive least reactive