¹H NMR Spectroscopy

from chapter _____ in the recommended text

A. Introduction

.

B. Chemical Shifts In ¹H Spectra

<u>smaller</u>

<u>high</u> field region <u>low</u> field region from 5 – 6.5 ppm

lower field than *H*C-Csp³ atoms *allylic and benzylic higher* chemical shifts than *H*C-Csp³

<u>higher</u>

<u>lower</u>

<u>x</u>.

NOTE FROM KB: it is very difficult to be sure about the chemical shift ranges for some of these protons, in other words some are borderline. When the book is re-printed I will make the ranges broader.

NOTE FROM KB: it is very difficult to be sure about the chemical shift ranges for some of these protons, in other words some are borderline. When the book is re-printed I will make the ranges broader.

C. Coupling In ¹H NMR

two bond couplings

Heteronuclear Coupling To ¹³C Is Unimportant

1.11 <u>are not</u> <u>NMR silent</u>).

hetero-

Homonuclear ¹H Coupling is not removed

2 and 3 bond homonuclear couplings.

ie 4 bond homonuclear

<u>do not</u> appear to be split. singlets.

Spin Systems any number >1 NMR

<u>n + 1</u> <u>does not</u> <u>does</u> <u>follows Pascal's triangle</u>.

H^a-C-H^b Spin Systems <u>will</u> <u>doublet</u>.

<u>sometimes</u> <u>will</u>

will appear as a *doublet*.

<u>_</u>0_

H^a-C-C-H^b Spin Systems <u>smaller</u> than

H^a₂C-CH^b₃ Spin Systems (Isolated Ethyl Groups)

<u>does not</u>

<u>do not</u>

triplet, and the methylene is a *quartet*.

 $(H^{a}_{3}C)_{2}CH^{b}$ Spin Systems (Isolated ⁱPr Groups) <u>heptet</u> with a relative intensity of _1:6:15:20:15:6:1 <u>doublets</u>.

Common Splitting Patterns In Organic Molecules

D. Diastereotopic Protons

E. Some Problems Involving Spectral Interpretation

structure

Here are the proton and carbon spectra of dimethyl formamide (DMF). Draw a resonance structure of DMF that shows a charge separation between

