${ }^{1} \mathrm{H}$ NMR Spectroscopy

from chapter \qquad in the recommended text

A. Introduction

B. Chemical Shifts In ${ }^{1} \mathrm{H}$ Spectra

smaller

high field region
low field region from 5-6.5 ppm
lower field than HC-Csp ${ }^{3}$ atoms
allylic and benzylic
higher chemical shifts than HC-Csp ${ }^{3}$
higher
lower

NOTE FROM KB: it is very difficult to be sure about the chemical shift ranges for some of these protons, in other words some are borderline. When the book is re-printed I will make the ranges broader.

	-			
inequivalent H	$\text { inequivalent }{ }^{H}$	$\text { inequivalent } \mathrm{H}$	inequivalent H	inequivalent H
number of resonances (ppm):	number of resonances (ppm):	$\begin{gathered} \text { number of } \\ \text { resonances (ppm): } \end{gathered}$	number of resonances (ppm):	$\begin{aligned} & \text { number of } \\ & \text { resonances (ppm): } \end{aligned}$
0-2__1_	0-2__3	0-2__3	0-2 __1	0-2__0
2-3_0_	2-3__0	2-3_0	2-3	2-3_1
3-4__0	3-4__0	3-4_0	3-4__0	3-4_0
4-7-1	4-7-2	4-7-1	4-7-1	4-7-0
7-9-0	7-9—0	7-9_0	7-9-0	7-9__0

NOTE FROM KB: it is very difficult to be sure about the chemical shift ranges for some of these protons, in other words some are borderline. When the book is re-printed I will make the ranges broader.

C. Coupling In ${ }^{1} \mathrm{H}$ NMR

two bond couplings

Heteronuclear Coupling To ${ }^{13} \mathrm{C}$ Is Unimportant
1.11
are not
NMR silent).
hetero-

Homonuclear ${ }^{1} \mathrm{H}$ Coupling
is not removed
$\underline{2 \text { and } 3}$ bond homonuclear couplings.
ie $\underline{4}$ bond homonuclear

A

do not appear to be split. singlets.

Spin Systems
any number >1 NMR

$H^{a}-C-H^{b}$ Spin Systems
will
doublet.
sometimes
will
will
appear as a doublet.

$H^{a}-\mathrm{C}-\mathrm{C}-\mathrm{H}^{\mathrm{b}}$ Spin Systems

smaller than

\qquad
isolated $\mathrm{H}^{a} \mathrm{CCH}^{b}$

molecule 1

will
triplet
doublet
$\mathrm{H}^{\mathrm{a}} \mathrm{C}-\mathrm{CH}^{\mathrm{b}}{ }_{2}$ Spin Systems

isolated $\mathrm{H}^{\mathrm{a}} \mathrm{CCH}^{b}{ }_{2}$

molecule 1
molecule 2
$\mathrm{H}^{\mathrm{a}} \mathrm{C}-\mathrm{CH}^{\mathrm{b}} 3$ Spin Systems
will
quartet, and H^{b} appears as a doublet.

$\mathrm{H}^{\mathrm{a}}{ }_{2} \mathrm{C}-\mathrm{CH}^{\mathrm{b}}{ }_{3}$ Spin Systems (Isolated Ethyl Groups)
does not
do not
triplet, and the methylene is a quartet.

$\left(\mathrm{H}^{\mathrm{a}}{ }_{3} \mathrm{C}\right){ }_{2} \mathrm{CH}^{\mathrm{b}}$ Spin Systems (Isolated 'Pr Groups)
$\underline{\text { heptet }}$ with a relative intensity of _1:6:15:20:15:6:1
doublets.

Common Splitting Patterns In Organic Molecules
A

s
C $\frac{H^{a}}{3 / 2} 3^{3^{b}}$
d

t

q

hept
$s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, quin $=$ quintet, sex $=$ sextet, hept $=$ heptet, oct $=$ octet
methyl methylene methylene ethylene \quad ethyl iso-propyl
possible fragment names: ethyl, ethylene, iso-propyl, methyl, methylene

E

3

F

5

A

2
6
1

${ }^{1} \mathrm{H}$ NMR

D. Diastereotopic Protons

where H^{a} and H^{b} are equivalent
 can be represented as

where H^{a} and H^{b} are equivalent

where H^{a} and H^{b} are not equivalent

where H^{a} and H^{b} are not equivalent

where H^{a} and H^{b}

where H^{a} and H^{b} are not
equivalent

inequivalent

H^{a} : __ doublet of quartets__
$H^{\text {b }}$:__doublet of quartets__

H^{a} :__triplet__
H^{b} : __triplet__

equivalent

E. Some Problems Involving Spectral Interpretation

Here are the proton and carbon spectra of dimethyl formamide (DMF). Draw a resonance structure of

DMF that shows a charge separation between

