25 Conjugate Additions

from chapter(s) ______ in the recommended text

A Introduction

B Polarization Of α,β-Unsaturated Carbonyl Compounds

is always on the β-carbon

LUMO

more / less stable
C Mechanism Of Conjugate Addition

enolate

enol

OMe
Examples Of Conjugate Additions

Amines And Thiols

the *nucleophile* adds to the 4-position

the *proton* adds to the oxygen

Enolate Intermediate

1,4-addition product

Enolate Intermediate

1,4-addition product
Enzyme-mediated Conjugate Additions

\[\cdot\text{O}_2\text{C} \equiv \text{CO}_2^- + \text{NH}_3 \xrightarrow{\beta\text{-methylaspartase}} \cdot\text{O}_2\text{CH}\text{CO}_2^- \]

\[\cdot\text{O}_2\text{C} \equiv \text{CO}_2^- + \text{OH}_2 \xrightarrow{\text{fumarase}} \cdot\text{O}_2\text{CH}\text{CO}_2^- \]

\[\text{S-product} \]

\[\text{enzyme} \cdot\text{SH} + \cdot\text{O}_2\text{C} \xrightleftharpoons{\text{rotation about this bond}} \text{enzyme} \cdot\text{C} \text{O}_2^- \]

\[\text{adduct} \]

\[\text{retro-1,4-addition}\]

\[\text{rotamer of initial adduct} \]

\[\text{isomerized product} \]
Stabilized C-Anion Nucleophiles

the base is required in \textit{stoichiometric} quantities.
Organometallic Agents In Laboratory Chemistry

Ph₃CuLi + PhC≡N → PhCH=CHCN

enolate intermediate

1,4-addition product
Conjugate Addition Then Aldol Condensation

- Conjugate addition product

- An enolate that can cyclize easily

- Cyclization product

- Cyclic aldol/dehydration product
Predict the products of the following reactions.

\[
\text{enolate from conjugate addition} \quad \text{terminal enolate}
\]

\[
\text{intramolecular cyclization product} \quad \text{enone}
\]
intramolecular cyclization product

enone
F Nucleophilic Epoxidation

α-effect

more acidic than water

It is not possible
G Addition Elimination Reactions

![Reaction 1](image1)

![Reaction 2](image2)

![Reaction 3](image3)
Formation Of α-Bromo Enones

\[
\begin{align*}
\text{enolate} & \quad \rightarrow \quad \text{intermediate} \\
\text{enolate} & \quad \rightarrow \quad \text{product}
\end{align*}
\]
Nucleophilic Aromatic Substitution

$S_{N}Ar$ processes.

They involve rate-limiting addition

anionic intermediates

sp^3 hybridized C-atom.

2-chloropyridine

3-chloropyridine
2- isomer.
Addition occurs fastest for the 2- and 4-isomers

2-chloro-1,3-pyrimidine reacted with cyanide

4-bromo-1,3-pyrimidine reacted with azide

chlorobenzene reacted with phenoxide