Hybridization: The Shape Of Things To Come

A. Intro

B. Electron Counting

In Atoms

In Molecules, and Valency
2 electrons in the first shell,
8 in the second,
8 in the third.
are formed when atoms share to form stable
ionic bonds are formed when atoms completely donate or receive electrons.
each hydrogen atom has 2 first shell electrons

One bond containing 2 electrons is formed in this sharing process valency of hydrogen in H_{2} is 1

The electronic structure of He
$C \quad 4$ \qquad
\qquad
\qquad $B r \quad 1$ \qquad
hydrogen atom may only bring 1 electron(s) hydrogen in common molecules is 1 .

atomic origin of electrons is lost

C. Mixing Atomic Orbitals To Maximize Overlap In Molecules

Combining s - and p-Orbitals

refer to where some electrons have maximum probability of being.
have different shapes as atomic orbitals.

atomic orbitals that are mixed or hybridized to make them.

2 molecular orbitals, of three gives 3 , and of n gives n.
one s - and one p-orbital gives a $s p$-hybrid, whereas $s p^{2}$-orbitals are formed if two p-orbitals are mixed with one s-.
three p - and one s-orbitals gives a \qquad $s p^{3}$ -hybrid.

Geometric Shapes

a line with the boy in the middle.
girl-boy-girl angle is 180°
this is called the ideal bond angle.
herself in the middle of a triangle with
then 120°.
with the point in the middle of a tetrahedron, then the bond angle is 109°.

Shapes Of Molecules Based On Geometric Shapes

one s - and one p-atomic orbitals gives $2 s p$-hybrid orbitals.
one s - and two p-orbitals give 3 hybrid orbitals
and 4 arise from one s - and three p-orbitals
Bold lines mean "emerges from the plane of the paper" and dashed lines indicate "projects behind the plane".

central atom will be $s p^{2}$-hybridized.
A tetrahedron of $s p^{3}$-hybrids will be formed if 4 bonds and/or lone pairs is generated from two $s p$-hybrid orbitals.
it has 0 lone pairs
therefore it is tetrahedral.
and it has 6 electrons that it did not share, ie 3 lone pairs.
that fluoride has 4 entities
hydrogen fluoride is approximately tetrahedral.
Water, oxygen is surrounded by 4 objects
O-geometry is tetrahedral
hydrogen chloride, chlorine is surrounded by 4 objects
Cl-geometry is tetrahedral
ammonia, nitrogen is surrounded by 4 objects
N -geometry is tetrahedral
hydrogen sulfide, sulfur is surrounded by 4 objects
S-atom is at the center of a tetrahedral arrangement
borane, boron is surrounded by 3 objects
B-atom is at the center of a triangular arrangement.

C in methane is tetrahedral with a dihedral angle of 109°

O in water is tetrahedral with a dihedral angle of 109°

Br in hydrogen bromide is tetrahedral with a dihedral angle of 109°
N in ammonia is tetrahedral with a dihedral angle of 109°

S in $\mathrm{H}_{2} \mathrm{~S}$ is tetrahedral with a dihedral angle of 109°

B in BH_{3} is trigonal with a dihedral angle of 120°
$s p$-hybrid consisting of 2 MOs in a linear arrangement with a dihedral angle of 180°
$3 s^{2} \mathrm{MOs}$, and these arrange in a trigonal arrangement with a dihedral angle of 120°
$4 s^{3} \mathrm{MOs}$, and these arrange in a tetrahedral arrangement with a dihedral angle of 109°

PH_{3}

CCl_{4}

D. Multiple Bonds

the C-atom after sharing has 8 electrons in its second shell the C-atom shares 7 electrons in its second shell; this is not a particularly favorable why methyl radicals are relatively reactive.

Methyl radicals could be $s p^{3}$-hybridized

$s p^{3}$

$s p^{2}$
σ-bonds are formed between two orbitals that point directly at each other. π-bonds are formed between two orbitals that are parallel.
σ-bonded $s p^{2}$-hybridized C-atoms

ethene before mixing p-orbitals
ethene after mixing p-orbitals
new MO in ethene contains 2 electrons.
combining $s p^{n}$-hybrids $(n=1-3)$ at each other are σ.
p-orbitals mix they form a π-orbital.
p-orbitals when they are aligned.
Perpendicular p-orbitals do not interact because the signs of the wave equations cancel in regions $s p^{2}$-hybridization is stabilized by formation of a π-bond.
σ-bonds are represented by 1 line(s), both one σ - and one π-bond are represented by 2 parallel line(s), so they are called double bonds.
isoprene
pyruvic acid

Electrons in hybridized atoms can occupy hybrid orbitals

Atoms in molecules can selectively
highly reactive species because it has only 6 electrons
this is called the singlet state.
this is a triplet state.

Another possibility is a $s p$-hybridized

triplet

unstable triplet

singlet
σ-bonded $s p$-hybridized C-atoms

ethyne before mixing p-orbitals

ethyne after mixing p-orbitals
two π bonds surrounding the σ bond called a triple bond.

\# ${ }_{\text {propyne }}^{1}$
\# __1
1-butyne
\# __1_
2-butyne
\# butane

acetonitrile
\#-butadiyne
it does not matter if multiple or single
are $s p$-hybridized, three $s p^{2}$, and four $s p^{3}$.

 cis-1-hydroxy-2-butene

naproxen

