Hybridization: The Shape Of Things To Come

A. Intro

B. Electron Counting

In Atoms

In Molecules, and Valency

2 electrons in the first shell,8 in the second,8 in the third.

are formed when atoms *share* to form stable ionic bonds are formed when atoms *completely donate or receive electrons*.

each hydrogen atom has 2 first shell electrons

One bond containing 2 electrons is formed in this sharing process valency of hydrogen in H_2 is 1

The electronic structure of He

hydrogen atom may only bring **1** electron(s) hydrogen in common molecules is **1**.

С	CH₄	Ν	NH ₃	0	H ₂ O	F	HF	Cl	HCI	Br	HBr	S	H ₂ S
-						· _		· · ·					

H_2 1s ¹ 1s ¹ 2p ¹ 2p ¹ 2p ¹ 2p ¹ 2s ²	02	2	H 1s ¹ 2p ¹ 2p ¹ 2p ¹ 2p ¹ 2p ¹ 2p ¹ 2s ² F	1	3 Ione pairs	
water electronic structure	bonds	lone pairs	hydrogen fluoride electronic structure	bonds		
H 1s ¹ 4p ¹ 4p ¹ 4p ¹ 4p ¹ 4p ¹ 3d ¹⁰ 4s ²	Br 1	3	C 2s ² 2p ¹ 2p ¹ 1s ¹ 1s ¹ 1s ¹ 1s ¹	4	0	
hydrogen bromide electronic structure	bonds	lone pairs	methane electronic structure	bonds	lone pairs	
B 2s ² 2p ¹ 1s ¹ 1s ¹ 1s ¹ H ₃	3	0	<i>H</i> ₂ <mark>1s¹1s¹</mark> 3p¹3p¹3p¹3p¹3s² S	2	2	
<i>borane</i> electronic structure	bonds	lone pairs	hydrogen sulfide electronic structure	bonds	lone pairs	
Si 3s ² 3p ¹ 3p ¹ 1s ¹ 1s ¹ 1s ¹ 1s ¹	4	0	P 3s²3p¹3p¹3p¹1s¹1s¹1s¹ H₃	3	1	
tetrahydrosilane electronic structure	bonds	lone pairs	phosphine electronic structure	bonds	lone pairs	

atomic origin of electrons is lost

C. Mixing Atomic Orbitals To Maximize Overlap In Molecules

Combining *s*- and *p*-Orbitals

refer to where some electrons have maximum probability of being.

have *different* shapes as atomic orbitals.

atomic orbitals that are mixed or *hybridized* to make them.

2 molecular orbitals, of three gives 3, and of *n* gives *n*.

one *s*- and one *p*-orbital gives a *sp*-hybrid, whereas sp^2 -orbitals are formed if *two p*-orbitals are mixed with one *s*-.

three *p*- and one *s*-orbitals gives a <u>**s**p</u>³ -hybrid.

Geometric Shapes

a line with the boy in the middle.

girl-boy-girl angle is 180° this is called the *ideal bond* angle.

herself in the middle of a *triangle* with then 120° .

with the point in the middle of a *tetrahedron*, then the bond angle is 109° .

Shapes Of Molecules Based On Geometric Shapes

one *s*- and one *p*- atomic orbitals gives 2 *sp*-hybrid orbitals.

one *s*- and two *p*-orbitals give $\frac{3}{4}$ hybrid orbitals and $\frac{4}{4}$ arise from one *s*- and three *p*-orbitals

Bold lines mean "emerges from the plane of the paper" and *dashed* lines indicate "projects behind the plane".

central atom will be sp²-hybridized.

A tetrahedron of sp^3 -hybrids will be formed if 4 bonds and/or lone pairs is generated from two sp-hybrid orbitals.

it has *0* lone pairs therefore it is *tetrahedral*.

and it has 6 electrons that it did not share, *ie* 3 lone pairs.

that fluoride has 4 entities

hydrogen fluoride is approximately tetrahedral.

Water, *oxygen* is surrounded by **4** objects O-geometry is *tetrahedral*

hydrogen chloride, *chlorine* is surrounded by **4** objects *Cl-geometry* is *tetrahedral*

ammonia, *nitrogen* is surrounded by 4 objects *N*-geometry is *tetrahedral*

hydrogen sulfide, *sulfur* is surrounded by 4 objects *S*-atom is at the center of a *tetrahedral* arrangement

borane, *boron* is surrounded by 3 objects *B*-atom is at the center of a *triangular* arrangement.

C in methane is *tetrahedral* with a dihedral angle of 109°

O in water is tetrahedral with a dihedral angle of 109°

Br in hydrogen bromide is tetrahedral with a dihedral angle of 109°

N in ammonia is tetrahedral with a dihedral angle of 109°

S in H₂S is *tetrahedral* with a dihedral angle of 109°

B in BH₃ is *trigonal* with a dihedral angle of 120°

sp-hybrid consisting of 2 MOs in a *linear* arrangement with a dihedral angle of 180°

3 sp² MOs, and these arrange in a trigonal arrangement with a dihedral angle of 120°

4 sp³ MOs, and these arrange in a *tetrahedral* arrangement with a dihedral angle of 109°

D. Multiple Bonds

the *C*-atom after sharing has 8 electrons in its second shell the *C*-atom shares 7 electrons in its second shell; this *is not* a particularly favorable why methyl radicals *are* relatively reactive.

Methyl radicals could be sp³-hybridized

 σ -bonds are formed between two orbitals that *point directly at each other*. π -bonds are formed between two orbitals that *are parallel*.

 σ -bonded sp²-hybridized C-atoms

ethene **before** mixing *p*-orbitals

new MO in ethene contains 2 electrons.

combining *sp*^{*n*}-hybrids (n = 1 - 3) at each other are σ .

p-orbitals mix they form a π -orbital.

p-orbitals when they are aligned.

Perpendicular *p*-orbitals *do not* interact because the signs of the wave equations *cancel* in regions

*sp*²-hybridization is stabilized by formation of a π -bond.

 σ -bonds are represented by **1** line(s),

both one σ - and one π -bond are represented by 2 parallel line(s), so they are called *double bonds*.

Electrons in hybridized atoms *can* occupy hybrid orbitals

Atoms in molecules *can* selectively

ethene after mixing *p*-orbitals

highly reactive species because it has only 6 electrons

this is called the *singlet* state.

this is a *triplet* state.

Another possibility is a sp-hybridized

triplet

unstable triplet

singlet

σ -bonded *sp*-hybridized *C*-atoms

ethyne **before** mixing p-orbitals

ethyne **after** mixing p-orbitals

two π bonds surrounding the σ bond called a *triple* bond.

it does not matter if multiple or single

are sp-hybridized, three sp^2 , and four sp^3 .

acetic acid

cis-1-hydroxy-2-butene

naproxen

alendronate

zidovudine (AZT)