S_N2 Displacement At sp³ Centers

from chapter(s) _____ in the recommended text

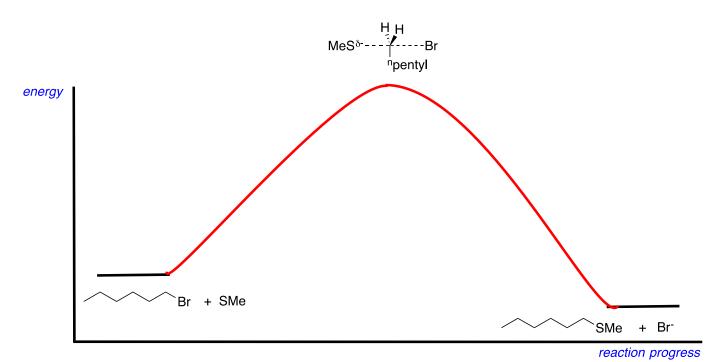
A. Introduction

B. Differentiating S_N1 and S_N2

S_N2 describes reactions in which one *replaces another* and *with second order kinetics*. Inversion of configuration is observed in S_{N2} processes whereas S_{N1}

unstable carbocations tend to proceed via S_{N2} pathways. tertiary carbocations often proceed via S_N1 mechanisms.

Stereochemical Inversion In S_N2 Reactions



Transition states in S_N2 displacement processes have geometries that resemble trigonal bipyramidal

we might call that S_B2 . her classmate Kurt Donothurt had a S_G1

Kinetics And S_N2 Pathways

product plus by-product

Note: This process does not include an intermediate, and the simultaneous substitution is the slow or rate determining step.

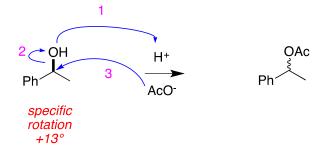
concentration of the nucleophile doubles

Reaction of methyl iodide with azide is accelerated

A substrate that might react via both S_N1 and S_N2 pathways is *more*

The transition state in a S_N2 reaction is *less*

C. Interconversion Of Enantiomers And Diastereomers

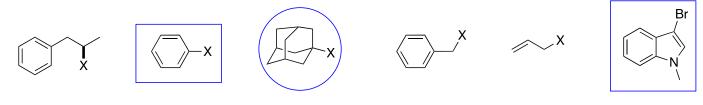

Conversion Of Alcohols Into Leaving Groups

Hydroxyl groups are not good leaving groups tosylates or mesylates makes them into much better

Mesyl is an $-S(O)_2Me$ group, and mesylate is $-O-SO_2Me$. Tosyl is an $-S(O)_2Ar$ group, and tosylate is $-O-SO_2Ar$ (where Ar is $-C_6H_4-4-Me$.

Mesylates and tosylates are *better* leaving groups than hydroxide formed with *retention* of configuration S_N2 processes with complete inversion stereochemistry.

The first reaction is most like $S_N 1$.


specific rotation = 0°

specific rotation = -42°

product of one S_N 1 and one S_N 2 reaction

Stereoelectronic Effects

 $S_N 2$ reactions occur via approach of a nucleophile nucleophile in a trigonal bipyramidal transition state cannot readily undergo bimolecular nucleophilic

S_N1 displacements involve interaction of a <u>LUMO</u> on the substrate with a nucleophile <u>HOMO</u>.

In S_N1 reactions the LUMO is *the empty p-orbital of the carbocation*. S_N2 displacements involve interaction of a *LUMO* on the substrate with a nucleophile *HOMO*.

In S_N 2 reactions the LUMO is a σ^* orbital.

draw C - I σ^* -orbitals and orientation of S_N2 displacement by CN

D. S_N2 Reactions Applied To Make Amides And Amines

Cyanide: A Useful C-Nucleophile

$$\nearrow$$
Br \longrightarrow CN \longrightarrow \longrightarrow NH₂ \longrightarrow O

This type of transformation (nitrile displacement then hydrolysis) works for Mel / Bnl / allyl bromide Phthalimide: Useful N-Nucleophile For Syntheses Of Primary Amines

Using this reaction it is possible to make *primary amines* This so called *Gabriel* synthesis is a *better*