¹³C NMR Spectroscopy

from chapter _____ in the recommended text

A. Introduction

B. Fundamental Physics Of NMR (Nuclear Magnetic Resonance)

Nuclear spin is the property that defines NMR active nuclei.

NMR is caused by *flipping* these spins between aligned and counter-aligned states by applying a *radiofrequency*

low energy range of the electromagnetic spectrum, *ie low* frequency and *high* wavelength.

For ¹³C and ¹H the nuclear spin is $\frac{1}{2}$, and for ¹²C the nuclear spin is 0.

The natural abundance of ¹H is *high*, but that of ¹³C is *low* (1.1 %),

FT-NMR spectra are averaged over multiple scans to increase both these parameters.

NMR transitions are much less than those between vibrational states in IR, and less than the quanta

NMR active nuclei are sensitive to large external magnetic fields

energy difference between nuclear spins is zero.

The larger the applied magnetic field, the *larger* the energy gap between nuclear spin states.

are aligned and opposed to an external field is governed by *both these parameters* (*the energy gap between the nuclear spin states / Boltzman distributions*).

NMR active nuclei *are* sensitive to the electron density these nuclei in different parts of the molecule flip when *different* field strength(s) are/is applied

Spectroscopists may say that electron environment "shield" each other

an applied magnetic field is *deshielded* relative to one that is insulated

C. Chemical Shifts In General

for ¹H the reference is SiMe₄.

Chemical shift on this scale reflects how much less the frequency is for an NMR active nuclei to flip, or *resonate*, relative to that standard

Most chemical shift values are *positive*.

Nuclei with positive chemical shifts are deshielded

0 in ¹H NMR corresponds to *the operating frequency of the machine* so a 200 MHz NMR spectrometer sets 0 at *200,000,000* Hz. One millionth of this is *200* so on part per million (ppm) corresponds to *200, ie 200* Hz.

> on a 250 MHz machine, 1 ppm corresponds to <u>250</u> Hz in proton NMR spectra on a 400 MHz machine, 1 ppm corresponds to <u>400</u> Hz in proton NMR spectra on an 800 MHz machine, *10 ppm* corresponds to <u>8000</u> Hz in proton NMR spectra

0.05 ppm are separated by a frequency of <u>25</u> Hz.

to a chemical shift difference of <u>0.1</u> ppm.

to a chemical shift difference of _____0.1___ ppm.

are 60 Hz apart will be *greater* on a 60 MHz

100 Hz apart will be *greater* on a 100 MHz

resonances at fixed frequencies appear to be less as the operating frequency

D. Chemical Shifts In ¹³C Spectra

this is called the *upfield* region and corresponds to *shielded*

this is called the *downfield* region and corresponds to *deshielded*

deduce electronegative atoms that *attract* electron density tend to *deshield* adjacent ¹³C nuclei, electron withdrawing groups will also tend to *deshield* adjacent ¹³C nuclei.

sp²-hybridized carbons tend to be less shielded

then those carbons are *inequivalent* except

¹³C NMR spectra resonate at *the same* chemical shifts, and inequivalent ones usually resonate at *different* ¹³C NMR spectra resonate at

this is the same as the number of resonances that are expected

Note: For some carbons, it is quite difficult to know in which range it will resonate in, so these are educated approximations.

1 inequivalent C number of resonances (ppm): 0 - 50 _1___ 50 - 100 _0___ 100 - 150 _0__ above 150 _0__

OEt

3

12

inequivalent C

number of

resonances (ppm):

0 - 50 _9__ 50 - 100 _3__ 100 - 150 _0__ above 150 _0__

OMe

MeO

6 inequivalent C number of resonances (ppm): 0 - 50 _4____ 50 - 100 _2___ 100 - 150 _0___ above 150 _0__

MeO OMe

inequivalent C number of resonances (ppm):

0 - 50 _2___ 50 - 100 _2___ 100 - 150 _0__ above 150_0

4

5 inequivalent C

number of resonances (ppm): 0 - 50 _3___ 50 - 100 _1___ 100 - 150 _0___ above 150_1_

6 inequivalent C number of resonances (ppm): 0 - 50 _2___ 50 - 100 _0___ 100 - 150 _4___

flipping of cis-decalins is fast on the 13C NMR time scale, so iPr Me group are not diastereo

above 150

ⁱPr

8 inequivalent C

number of resonances (ppm): 0 - 50 _8____ 50 - 100 _0___ 100 - 150 _0___ above 150 _0___

__6_ inequivalent C number of resonances (ppm): 0 - 50 _3___ 50 - 100 _0__ 100 - 150 _2_ above 150_0

з inequivalent C number of

8 inequivalent C number of resonances (ppm): 0 - 50 _4___ 50 - 100 _0___ 100 - 150 _4__ above 150 _0__

3

inequivalent C

number of

resonances (ppm):

0 - 50 _0___ 50 - 100 _0___ 100 - 150 _3__

above 150_0

5

inequivalent C

number of

resonances (ppm):

0 - 50 _4___ 50 - 100 _1__ 100 - 150 _0_

above 150_0

12

inequivalent C

number of

resonances (ppm):

0 - 50 _4___ 50 - 100 _2__ 100 - 150 _6_

above 150 _0_

OH

OH

5 inequivalent C number of resonances (ppm): 0 - **40** _2___ **40** - 100 _2__ 100 - 150 _0__ above 150

.7_ inequivalent C number of resonances (ppm): 0 - 50 _0___ 50 - 100 _0__ 100 - 150 _7_ above 150 _0_

4 inequivalent C number of resonances (ppm): 0 - 50 _3___ 50 - 100 _1__ 100 - 150 _0_ above 150_0

5 inequivalent C number of

Note: For some carbons, it is quite difficult to know in which range it will resonate in, so these are educated approximations.

inequivalent C

number of resonances (ppm): 0 - 50 _2___ 50 - 100 _0__ 100 - 150 _0_ above 150_0

soccer-ball-like molecule C_{60} , has <u>6</u> ¹³C resonances.

so they usually *cannot* be reliably used to ascertain the number

7 inequivalent C

4 inequivalent C

3 inequivalent C

E. Coupling In ¹³C NMR

¹³CH Spin Systems

The ¹H nucleus *is* NMR active

magnetic effect on her compass would be *different* to another molecule

into *two* peaks of almost equal intensity; this is called a *doublet*.

The chemical shift of that carbon is *exactly at the center of* these resonances.

¹³C NMR spectra the effects of *coupling* with protons with protons in the molecule are completely

¹³C spectra of ¹³CHCl₃ and ¹³CCl₄ then we would see a *doublet and a singlet*, respectively.

In that experiment it *would* be possible to distinguish between ¹³CHCl₃ and ¹³CCl₄

¹³<u>C</u>H₂ Spin Systems

Energetically, the effect is *the same* for the *ao* and *oa* cases.

it will be split into n + 1 peaks.

the number *n* refers to the number of nuclei *doing the splitting* and not those *being observed*.

The relative intensities of these peaks *follows Pascal's triangle*.

¹³C atoms adjacent to each other in a chain are *rare* and *can* be ignored.

Differentiating CH, CH₂, And CH₃ In ¹³C Spectra

splitting pattern is called the *coupling* constant and it is expressed in *Hz*.

as chemical shift differences would be the *different* on machines operating at different field strengths they are *never* quoted in this way.

DEPT Spectra To Differentiate Quaternary, Methine-, Methylene-, and Methyl-Carbons Carbons with no hydrogen atoms on them, *quaternary*, *do not* show up in DEPT spectra.

DEPT 135 spectra are usually presented with CH & CH₃ *positive* peaks, and resonances for CH₂ carbons *negative*.

DEPT 90 spectra only show CH peaks.

Variations of DEPT can allow CH & CH₃ groups to be differentiated

DEPT is a *more* effective way of differentiating methyl, methylene, methane, and quaternary

(Some inequivalent carbon atoms are given the same number if they are indistinguishable in the spectra, $eg C^4$, C^8 and C^9).

proton-proton couplings in ¹H NMR spectra are *nearly always shown*.

spectroscopy can correlate ¹³C- with ¹H-NMR signals of the protons attached to them.

F. Some Problems Involving Interpretation Of ¹³C Spectra

