¹H NMR Spectroscopy

from chapter _____ in the recommended text

A. Introduction

B. Chemical Shifts In ¹H Spectra

chemical shift range in ¹H NMR is much *smaller* than in ¹³C NMR.

carbon atoms tend to resonate in the *high* field region from 0.5 - 2.5 ppm sp²-hybridized carbon atoms tend to be seen at *lower* field region from 5 - 6.5 ppm

*H*Csp³-Csp² tend to be shifted to *lower* field than *H*C-Csp³ atoms C*H*-alkene and C*H*-aryl protons, *ie allylic and benzylic*, *r*espectively, tend to resonate at *higher* chemical

attached to an aromatic ring tend to resonate at higher chemical shifts than

shifted to significantly *lower* field than HC-C atoms

Chemical shifts of functional groups with relatively acidic hydrogen's (*eg* alcohols, carboxylic acids, amines) tend to vary with solvent and sample concentration due to *hydrogen* bonding.

If there are x unique H environments the number of NMR signals will be x.

Note: For some hydrogens, it is quite difficult to know in which range it will resonate in, so these are educated approximations.

Note: For some hydrogens, it is quite difficult to know in which range it will resonate in, so these are educated approximations.

C. Coupling In ¹H NMR

In the ^aC-C-^bH system ^aC may couple to ^bH via *two* bonds, *ie two* bond couplings.

Heteronuclear Coupling To ¹³C Is Unimportant

The natural abundance of ¹³C in organic molecules is **1.11** % most protons attached to a carbon atom *are not* split by the one bond ¹³C nuclear spins

¹²C, does not occur because that nucleus is NMR *silent*).

Coupling between ¹³C and ¹H are examples of *hetero*- nuclear couplings.

Homonuclear ¹H Coupling

splitting other protons, hence this *homo* -nuclear coupling information usually *is not* removed

2 and 3 bond homo nuclear couplings.

Couplings of the type H^a-C-C-C-H^b, *ie* 4 bond homonuclear

 $CICH_2CH_2Br$ **A** are separated by **3** bonds and *do* give significant couplings.

in CICH₂OCH₂Br **B** have **4** bonds between them and *do not* give significant couplings.

Equivalent protons in NMR spectra *do not* appear to be split.

Resonances in molecules like CMe₄, MeOMe, MeCOMe, and MeCOCH₂Cl are singlets.

Spin Systems

They consist of any number >1 NMR protons.

its resonance will be split into n + 1 signals

It does not matter how many protons are being split but it does matter

The relative intensities of the peaks in the split signal *follows Pascal's triangle*.

H^a-C-H^b Spin Systems

field that reaches us *will* depend on whether the spin will appear as a *doublet*.

CH₂ group can *sometimes* be inequivalent, and if they are then the *will* appear to split each other.

then the field that reaches us *will* depend on whether the spin of H^b appear as a *doublet*.

CH^b₂ system when a magnetic field is applied *will* depend on whether the spin of H^b is aligned or opposed

In this system, H^{a} will appear as a *triplet* due to coupling with H^{b} .

Conversely, H^{b} will appear as a *doublet* due to coupling with H^{a} . H^aC-CH^b₂ Spin Systems

Me(

isolated HaCCHb2

molecule 1

molecule 2

H^aC-CH^b₃ Spin Systems

The field that reaches H^a in an H^a -C-CH^b₃ system *will* depend on whether the spin of H^b is H^a will appear as a *quartet*, and H^b appears as a *doublet*.

 $H^{a}_{2}C$ -C H^{b}_{3} Spin Systems (Isolated Ethyl Groups) In a $H^{a}_{2}C$ -C H^{b}_{3} system, it *does not* make any difference to the splitting protons in NMR spectra *do not* split each other.

where the methyl part is a *triplet*, and the methylene is a *quartet*.

(H^a₃C) ₂CH^b Spin Systems (Isolated ⁱPr Groups)

hence H^{b} will appear as a *heptet* with a relative intensity of <u>1:6:15:20:15:6:1</u> whereas the methyl groups will be split into *doublets*.

Common Splitting Patterns In Organic Molecules

s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sex = sextet, hept = heptet, oct = octet

methyl	methylene	methylene	ethylene	ethyl	iso-propyl

fragment name possible fragment names: ethyl, ethylene, iso-propyl, methyl, methylene

Sorry, that the positions of **2** and **6** change in the answers above.

structure

D. Diastereotopic Protons

Protons on a methylene group are *inequivalent* when the methylene

E. Some Problems Involving Spectral Interpretation

structure

Explain why *two* methyl resonances are seen in each spectrum:

because rotation around the OC-N bond is slow on the NMR time scale, due to this resonance effect

