Mass Spectrometry (MS)

from chapter(s) _____ in the recommended text

A. Introduction

B. Components Of Mass Spectrometers

molecules on the basis of the ratio of *mass-to-charge*.

primary objective of MS is to determine the *molecular mass* of that entity from the complete molecule *without* fragmentation).

Most mass spectrometers are able to

- create ions in the gas phase
- separate ions on the basis of *m/z* (*ie* an analyzer)
- detect the number of ions of each *m/z*

three basic components to a mass spectrometer an ionization source / an analyzer / a detector.

Electrospray (ESI) is a form of *ionization*.

Quadrupoles are components used for analysis.

Time-of-flight (TOF) is a form *analysis*.

Quadrupole ion traps are components used for analysis.

Matrix assisted laser desorption (MALD) is a form of ionization.

Fourier transform (FT) is a form of analysis.

Electron Impact (EI) is a form of *ionization*.

Detectors in MS are usually *electron multipliers*.

Thus, *MALDI-TOF* is a valid description but *ESI-MALDI* is not.

C. Primary Ions Formed In Different Ionization Techniques

In *matrix-assisted lased desorption ionization*, or <u>MALDI</u>, the sample is adsorbed The matrix transfers energy to the sample and mainly *protonates* it to give a cation, *ie* $[M + H]^+$.

In *electrospray ionization*, or <u>ESI</u>, the sample in a solvent (*eg* water) is sprayed be protonated by the solvent giving $[M + 1]^+$ and ions with more than one proton.

Electron impact, removes an electron from molecules to give radical cations

MM as the sample, provided there is no fragmentation, ie $[M]^{++}$.

Resolution is important in MS when trying to distinguish two materials of similar molecular weights.

Observation of signals when working with tiny amounts of substrate is a question of sensitivity.

It is one of the *most* sensitive forms of MS.

D. Isotopes In Mass Spectrometry

Element	Isotope	Abundance (%)	Mass number	Exact mass
hydrogen	ЪН	99.99	1	1.00783
carbon	¹² C	98.89	12	12.00000
carbon	¹³ C	1.11	13	13.00335
nitrogen	¹⁴ N	99.64	14	14.00307
oxygen	¹⁶ O	99.76	16	15.99492
fluorine	¹⁹ F	100	19	18.99840
phosphorus	³¹ P	100	31	30.97376
sulfur	³² S	95.00	32	31.97207
chlorine	³⁵ Cl	75.77	35	34.96886
chlorine	³⁷ Cl	24.23	37	36.96590
bromine	⁷⁹ Br	50.69	79	78.91835
bromine	⁸¹ Br	49.31	81	80.91635
iodine	127	100	100	126.904468

CO

 C_2H_4

C₂H₅³⁵Cl

27.99492

28.03132

64.00801

exact mass

exact mass

exact mass

CH ₃ ⁷⁹ Br	CH ₃ ⁸¹ Br	C ₂ H ₅ ³⁷ Cl
93.94184	95.93984	66.00505
exact mass	exact mass	exact mass

A high resolution mass spectrometer can distinguish

containing natural chlorine are separated by 1.99704 atomic mass units (amu's) in a ratio of 3.13:1, and compounds containing natural bromine are separated by 1.99800 amu's in a ratio of 1.03:1.

containing *two* bromines will have 3 molecular ions in a 1:2:1 containing *three* bromines will have 4 molecular ions in a 1:3:3:1

Illustrative Interpretation Of Isotopes In MS

the chlorine-containing compound A is number: __2_____ the bromine-containing compound B is number: __1____ the non-halogenated compound C is number: ___3____

2 (m/z = 112 and 114):

3 (m/z = 107):

containing odd numbers of nitrogen atoms (1, 3, 5 etc) always have odd molecular ion m/z values.

E. Fragmentation

dissociate into smaller cations and radicals

the *most* stable one that is most likely to be observed.

Electron impact methods usually show fragmentation, but *ESI* does not.

ESI is widely used in contemporary MS, but *EI* instruments are becoming less important.

Fragmentation is usually *undesirable* because observation of the molecular ion is the most important and this *is* useful when complementary methods

observing molecular ions and fragmentation patterns is MS/MS.

Tandem mass spectrometry allows observation of molecular ions from peptides and proteins

-Me•

+ СН3

The McLafferty Rearrangement

This gives cleavage of the bond between the *and* fragments

All these answers can also be shown as a movement in single electron steps corresponding to radical reactions and using fishhook arrows.

H P +	McLafferty rearrangement	+	H _O

alkene

radical cation

Molecule on the left can undergo *McLafferty rearrangement* since it has -hydrogen whereas molecule on the right does not.