Curly Arrows And Electron Flow

A. Introduction

B. Electron Flow

of electrons is illustrated using a *full* arrow.

electrons are, ie at the site of relatively high electron density.

energetically uphill

Affecting Only One Bond

the following *heterolytic* bond fission reactions

precise English need not be absolutely true; it is possible to tell lies

if the arrows are accurate that *does not* mean the movement

number of cations formed *must* equal the number of anions.

full arrow represents movement of 2 e; this sometimes severs the link between

then this implies X is less electronegative than Y

than X then electrons would tend to move *towards* Y.

pathway1

pathway 2

Affecting Four Bonds

Pathway a tends to be *favored* if X is more basic than Y

Representations Of Charged Hydrocarbon Scaffolds

the way they pronounce "*unionized*".

from a sp^3 -hybridized carbon the resulting anion is sp^3 -hybridized.

electrons move *towards* C and the resulting anion is sp^2 -hybridized.

sp-Hybridized carbanions are formed from sp-hybridized

A sp^3 -hybridized carbon has <u>4</u> groups around it. carbocations formed from sp^3 -hybridized atoms tend to be sp^2 -hybridized.

Carbocations of the type C⁺R₃ tend to be *sp*²-hybridized, and carbanions C⁻R₃ are *sp*³-hybridized. Explain why this is so by considering the number of electrons around carbon in C⁺H₃ and in C⁻H₃. Carbon in C⁺R₃ has to accommodate *three atoms* containing *six* shared electrons around it. Carbon in C⁻H₃ has to accommodate *three atoms* and *one lone pair* containing *eight* shared electrons around it.

C. Heteroatoms, Lone Pairs, And Moving Electrons

These answers are for the form shown in the diagram (of course resonance makes the O atoms equivalent)

There *is not* a change in the number of groups sp^{3} -hybridized heteroatoms gives sp^{3} -hybridized protonated

 sp^2 -hybridized heteroatoms become sp^2 -hybridized protonated heteroatoms, and sp-hybridized heteroatoms become sp-hybridized protonated heteroatoms.

Conversely, there <u>can</u> be a change in hybridization state when electrons shift to atoms without protonation (*eg* between the oxygens of carbonyl groups).

it is usually advisable to put the pen on the electron density and push

