Acids And Bases

A. Introduction

B. Log Scales To Measure Proton Dissociation From Organic Molecules Equilibria That Generate Protons

hats not worn at any moment is a *constant*, because an equilibrium

of hats worn at equilibrium in *different* games will be *variable*; therefore, it *is not* a good parameter

the ratio of people wearing hats to people not wearing hats will not change significantly

This *is* effectively the same as the statement:

protons in acid base equilibria may be represented as:

to generate protons for all organic

Weak acids dissociate to give a small fraction

compound is a *strong* acid and the equilibrium constant is *high*.

methane is therefore a *weak* acid.

therefore a significantly *stronger* acid than methane.

the number of moles of CH3⁻ does equal the concentration of protons

	10 ⁶⁰	10 ⁶ 10	1 10 ⁻⁶	10 ⁻⁶⁰	
	O H	H ^{∕S} ∖ <mark>H</mark>	H ^{∠O} ∖H	H O H	F、 _H
$K_a = 5.4 \times 10^{-2}$	1.8 x 10 ⁻⁵	1.1 x 10 ⁻⁷	1.0 x 10 ⁻¹⁴	2.4 x 10 ⁻⁴	6.6 x 10 ⁻⁴
1	4	5	6	3	2

with a K_a of 1 would be a *strong* acid.

Simplifying The Scale: pKa condenses

HO O H	о Н	H ^{∠S} ∖ <mark>H</mark>	H∕ ^O ∖ <mark>H</mark>	H O ^H	F _{、H}
$K_a = 5.4 \times 10^{-2}$	1.8 x 10 ⁻⁵	1.1 x 10 ⁻⁷	1.0 x 10 ⁻¹⁴	2.4 x 10 ⁻⁴	6.6 x 10 ⁻⁴
logK _a = -1.27	$\log K_a = -4.74$	logK _a = -6.95	$\log K_a = -14$	$\log K_a = -3.74$	logK _a = -3.18
-logK _a = 1.27	$-\log K_a = 4.74$	-logK _a = 6.95	-logK _a = 14	$-\log K_a = 3.74$	-logK _a = 3.18

diagram above the values for $-\log K_a$, *ie* the *pK_a* value.

have K_a values less than one, meaning *only a small amount* of the compound using negative logs of K_a values is they are *positive* for most organic compounds.

Strong acids have *larger* K_a values than weak acids, *less* -logK_a values, and *smaller* pK_a values.

one pK_a unit means that it is 10 times easier

10 pK_a units means that it is 10,000,000,000 times easier

NH_4^+	NH ₃	H ₃ O ⁺	H ₂ O
ammonium pK _a = 9.2	ammonia 38	hydroxonium -1.7	water 14.0
2	4	1	3

it is about 10²⁹ times more likely that an ammonium ion

it is about 10¹⁷ times *less* likely that water will dissociate

C. Acid-Base Equilibria

following equilibrium favors the starting materials

NH_4^+	+	H ₂ O	NH ₃	+	H_3O^+
acid		base	base		acid

favor the side with the weakest acid because

Weak acids have *higher* pK_a values than stronger acids.

It is possible for the same compound to be an acid in some reactions and a base in others.

deprotonating an acid can be called its *conjugate base*.

given to the substance formed by *protonating a base*.

Ammonium, NH_4^+ , is the conjugate *acid* of ammonia.

Hydroxonium is the conjugate *acid* of water.

favors products

favors starting materials

stronger

weaker

stronger

favors products

 $\frown 0^{-} + H^{-}N^{+}NH \longrightarrow O^{-}H + N^{-}NH$

weaker

favors *products*

favors starting materials

D. Predicting Relative pKa Values

 $C \xrightarrow{O} H \xrightarrow{O} F_{3}C \xrightarrow{O} + H^{+}$ $C \xrightarrow{more}{stable}$

Ethanoic acid is a *weaker* acid than trifluoroethanoic acid.

stabilized by *electronegativity* effects.

1,1,1,3,3,3-Hexafluoropropan-2-ol has a lower pKa than propan-2-ol; therefore, it is a stronger acid.

The alkoxide from 1,1,1,3,3,3-hexafluoropropan-2-ol is *more* stable than that from propan-2-ol because of *electronegativity* effects.

Allyl anions are *more* stable than propyl anions due to *resonance* effects, hence propene is a *stronger* acid than propane.

The enolate from ethanal is *more* stable than allyl anions due to *electronegativity* effects, so ethanal has a *lower* pK_a than propene.

Dimethyl succinate has a higher pKa than diethyl malonate, mainly due to resonance effects.

E. Predicting Sites Of Protonation

protonated form

protonated form

most likely to be protonated selectively at N^3 .

explanation:

because of resonance, electrons

can move from N^1 to N^3 another

F. Lewis Acids And Bases

Protons feature in *some* acids.

eg an empty p-orbital.

Lewis acids

acids because they have 6 electrons in their valence shell and an empty

<u>can</u> fit the definition of a Lewis acid.

Protons do fit

two phosphorus atoms are sp^3 hybridized.

Mg²⁺ + 0,0⁻⁻0,0 H0⁻P_0⁻P_0H

dihydrogen diphosphate

