Hydrolysis And Dehydration Of Amides

from chapter(s) \qquad in the recommended text

A. Introduction

B. Reactivity Of Amides

less
less
$s p^{2}$
pyramidal and $s p^{3}$
more
a than e.

2
1 at elevated temperatures.
more
more

\longleftrightarrow

C. Hydrolysis Of Amides

tetrahedral

NH_{4}
irreversible
$\mathrm{NH}_{4}{ }^{+}$is not nucleophilic and cannot attack carbonyl to form amide.
because carbonyl group on amide cannot be protonated under neutral condition, leading to inactivated carbonyl, then water cannot attach to carbonyl carbon.

\qquad
tetrahedral intermediate

D. Proteases

Function

esterases
proteases.
~ 7
Catalytic
enzymes
hydrogen bonding
do not
active-

$+$

carboxylic acid
amine
degrades

$+$

Catalysis

kinetic

Reaction Progress
destabilizing the substrate and/or stabilizing the intermediate.

Reaction Progress

Reaction Progress
situation a.
is the way

Protease Inhibitors

9 proteins
enzymes are proteins but not all proteins are enzymes.
active- site
a high affinity
the alcohol functionality
mimic the tetrahedral intermediate in amide hydrolysis.

1
thermolysin inhibitor

Detection Of Protease Substrate Selectivity

E. Hydrolysis Of Nitriles Involves Amide Intermediates carboxylic acids, partial.

Tautomerization

tautomerizarion

$\xrightarrow[-\mathrm{NH}_{4}{ }^{+}]{+\mathrm{NH}_{3}}$

amide

carboxylic acid

F. Dehydration Of Amides

$$
\mathrm{P}_{2} \mathrm{O}_{5}+\quad 3 \mathrm{H}_{2} \mathrm{O} \quad=2 \mathrm{H}_{3} \mathrm{PO}_{4}
$$

——___ـ_

