Oxidation States, Hydrogenation, And Hydrogenolysis

from chapter(s) _____ in the recommended text

A. Introduction

B. Oxidation States In Organic Chemistry

<u>addition</u>							
loss							
<u>addition</u>							
more less C-O.							
less C-H bonds							
<u>more</u> C-O,							
	0 	O II					
ЛОН Л	∕∽Он	\sim	\sim		/	Br	CO ₂
а	b	С	d	е		f	g
			0				
		N	н [⊥] ́∩н		CCl₄	HCCl ₃	НСОН
h	i		k		m	n	0
lowest oxidation state	d						
lowest oxidation state							
one level higher	а, е	e, f, h					
one more level higher	c , i,	l, o					
	h : L						
still another level higher	D , J , К	, n					
highest oxidation state	q. m						
ingricer extension state							

Cyclohexane is at a higher

C. Addition Of H₂

Hydrogenation And Hydrogenolysis Hydrogenation reactions hydrogenolysis involve homolytic radical mechanism, than a ionic

<u>stabilize</u> <u>benzyl</u> <u>more</u>

.

D. Hydrogenation

E. Hydrogenolysis single

further hydrogenolysis of these products is possible

F. Double Bond Equivalents

 $\underline{1}$ and $\underline{2}$ molecules of H₂ $\underline{4}$ molecules of H₂ \underline{can} be calculated

<u>can</u>

<u>1</u> and <u>1</u>, respectively.

(<u>True</u>,

<u>1</u> and <u>4</u>

<u>0</u>

<u>True</u>,

do not apply

G. Hydridic Reductions

