Peptide Syntheses

from chapter(s)	in the recommended text
-----------------	-------------------------

A. Introduction

do not acid

H-Phe-Phe-OH H-Met-Phe-OH H-Met-Met-OH H-Phe-Met-OH dipeptide dipeptide dipeptide dipeptide diketopiperazine symmetrical diketopiperazine unsymmetrical diketopiperazine

would also

impractical synthesis

N- protect one of the fragments and *C*- protect the other.

Reactions Of Unprotected Amino Acids

Carboxylic acids do not combine with amines carboxylic acids to acid chlorides,

dipeptide	dipeptide	dipeptide	dipeptide	
H-Met-Phe-OH	H-Met-Met-OH	H-Phe-Phe-OH	H-Phe-Met-OH	

There are also three possible cyclic by-products, *diketopiperazines*, in the reaction above; show these:

Polymeric materials would also be produced in this reaction. Overall, this route would be a(n) impractical

To solve this problem it is necessary to *N*-protect one of the fragments and *C*-protect the other.

Reactions Of Protected Amino Acids

Illustrative Protection: BOC/tBu

N-BOC Protected Amino Acids amines amines.

with trifluoroacetic (TFA) acid.

carbocation

carbon dioxide.

amino acid

Give the products of the following reactions

unstable carbamate

undesirable HSiEt₃

Tyr / Trp

Achn
$$\stackrel{\circ}{\longrightarrow}$$
 $\stackrel{\circ}{\longrightarrow}$ $\stackrel{\circ}{\longrightarrow}$

usually

by-product cation

OBn carbocation amino acid

C-Protection Of Amino Acids With ^tBu-Groups

Ac-Met-O^tBu

1-Adamantyl esters cannot are

Activation Of N-Protected Amino Acids

too *reactive* for using *carbodiimide* reagents ie dicyclohexylurea, because the by-products can be protonated and are water-soluble.

BOC-Phe-O

The Epimerization Problem

epimerize) epimeric products.

difficult to separate

azlactone.

is driven by aromatic stabilization in the product and simultaneous loss carbamate.

more

Strategies In Solution Phase Syntheses That Avoid Epimerization

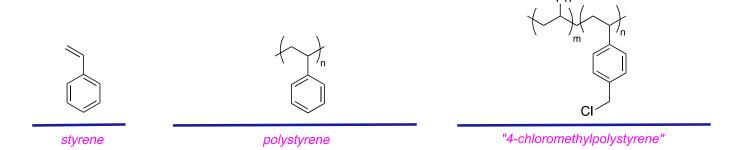
will

will tend to

BOC-lle-Val-Ala-OBu more prone to racemization

circle the one amino acid in one of these structures that is most vulnerable to epimerization

are


C- to N- direction

B. Solid Phase Peptide Syntheses

are mixed with is usually required easier to purify advantages of

are not optimally

C-terminus.

S_N2 reaction

TFA often in the presence of a scavenger; this does not

N-terminus

$$^{1}Bu$$
 O $H_{2}N$ $H_{2}N$

BOC-Ser(O^tBu)-OH

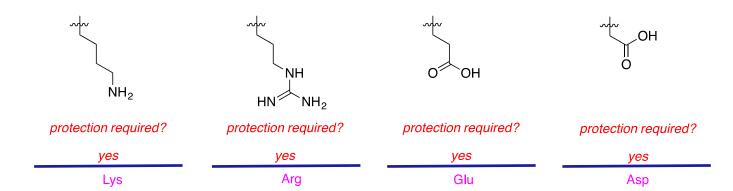
$$H_2N$$
 O
 O
 Bu

HF and scavengers

H-GGFM-support

BOC-LGGFM-support

$$\frac{\mathsf{HF}}{\mathsf{HSiEt}_3}$$


H-LGGFM-OH

C. Side-chain Protection Of Amino Acids

may

is required.

undesirable desirable

Phe

Asn

GIn

D. The FMOC Approach

Cys

HF

base labile

via *TFA*.

$$FMOC\text{-}Glu(^{\dagger}Bu)\text{-}OH$$

$$FMOC\text{-}Lys(BOC)\text{-}OH$$

$$FMOC\text{-}Ser(^{\dagger}Bu)\text{-}OH$$

$$FMOC\text{-}Ser(^{\dagger}Bu)\text{-}OH$$