Peptides And Proteins

from chapter(s) _____ in the recommended text

A. Introduction

B. Nomenclature And Conventions

by *amide* bonds. on the *left*, *right*.

triglycine

amine, acid.

ammonium and a C-terminal carboxylate.

trans (based on the *peptide polyamide backbone alkenes*.

local conformations

like ϕ (the *N*-C α dihedra)I ψ C α -CO), and ω (CO-NH) ω because of amide

C. Primary Structures

sequence of amino sequence of similarity fold into similar shapes.

Elucidation Of Primary Peptide Structure Via The Edman Degradation

primary structure

Chromatographic analysis does require

It *is* possible. It *is not*

Elucidation Of Primary Structure Via Enzymatic Cleavage And Mass Spectroscopy

mass spectrometry so *proteases at predictable sites within* of a chain. Positions of cleavage *vary*

Chymotrypsin

fragment 1:	H-Pro-Ala-Pro-Gly-Arg-Trp-OH
fragment 2:	H-Ala-His-Gln-Met-Val-Lys-His-Lys-Pro-Trp-OH
fragment 3:	H-Pro-Ser-Tyr-OH
fragment 4:	H-Thr-Ala-OH
Elastase	
fragment 1:	H-Pro-Ala-OH
fragment 2:	H-Pro-Gly-OH
fragment 3:	H-Arg-Trp-Ala-OH
fragment 4:	H-His-GIn-Met-Val-Lys-His-Lys-Pro-Trp-Pro-Ser-Tyr-Thr-Ala-OH

Elucidation Of Primary Structure Via Cyanogen Bromide Cleavage And Mass Spectroscopy

methionine methionine Cγ atom iminolactone produced

D. Secondary Structures

hydrogen bonding between residues shielding of hydrophobic residues from aqueous surroundings placing hydrophilic residues at the core placing hydrophilic residues at the periphery entropy gains ionic interactions between charged side-chains stacking of aromatic rings packing of one chain against another overlap of orbitals containing CO lone pairs with other CO π^* orbitals increased temperature addition of high concentrations of guanidine hydrochloride

secondary structure. primary structures.

are called *helices*.

right handed *does not matter* (right helical in both directions)

most common 3.6 amino acid **Pro** is rarely in collagen.

Amino acid blocks that coil into spring-like arrangements are called helices. right handed corkscrew when viewed from does not matter. *most* common, α -helices, have 3.6 amino acid residues per coil of the helix. *Pro* is rarely found in α , π , or 3₁₀ helices beca..... found in *collagen* /.

in the same directions. in opposite directions. the strand loops back on itself. β -turns, while γ -turns antiparallel β-sheets.

Different protein, Ha!

a β -strand **b** sheet-turn-sheet **c** parallel β -sheet **d** antiparallel β -sheet <u>b</u>

E. Tertiary And Quaternary Structures

these protein units usually are not covalently

F. Constraints On Peptide And Protein Structures

do not fold

actually following should be shown with one letter codes where:

Cys = CTyr = YIIe = IGIn = QAsn = NPro = PLeu = L:GIy = G

S H-Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH₂

Ac-Cys-Ala-Cys-Ala-Cys-OH

Ac-Cys-Ala-Cys-Ala-Cys-OH

·S Ac-Cys-Ala-Cys-Ala-Cys-Ala-Cys-OH -Ś S

It *is* necessary *could* be done