Characteristics Of Enols and Enolates

from chapter(s) _____ in the recommended text

A. Introduction

B. Enols Form Under Acidic Conditions

Mechanism Of Formation protonation

enol.

enol

Deuterium Exchange

deuterons.

tautomerism;

Enols Of 1,2- And 1,3-Dicarbonyl Compounds *keto* form

10⁶ : 1. enol

reason: Enolization of 1,3-cyclohexanedione forms conjugation between carbonyl and C=C which is stabilized by resonance, while the acetone does not have resonance effect.

reason: Compared to acetone, one carbonyl group in the 2,3-butanedione acts as electron withdrawing group that enhances acidity of α -H.

conjugates

In the print the question above right will be changed to the following:

Enols Of Other Carbonyl Compounds

Keto-Enol Tautomers Of Other Compound Types

incorrect they are not resonance structures.

C. Enolates Form Under Basic Conditions

Mechanism Of Formation

Resonance Structures Of Enolates

more

more

It *is not* easy *N*-anions instead.

D. Effects Of Enolization

Racemization

achiral

optically active

can racemize

enol

Double Bond Migration

Migration

keto

glucose

enol

fructose