Aldol and Aldol Condensation Reactions

from chapter(s) \qquad in the recommended text

A. Introduction

B. Acidities Of Carbonyl Compounds

electrophile

nucleophile

nucleophile

nucleophile

nucleophile

electrophile

less

more
deprotonated forms.

C. Aldol Reactions

nucleophile
electrophile.

homo-coupling
equal
same

exactly
the same as

$+$
syn

Intramolecular Aldol Reactions

the same molecule.

starting material re-drawn
product

\sim

trans-decalin
cyclo- $\mathrm{C}_{10} \mathrm{H}_{20}$
N

cyclo- $\mathrm{C}_{14} \mathrm{H}_{28}$

cyclo- $\mathrm{C}_{22} \mathrm{H}_{44}$

HO^{-} \rightleftharpoons
internal enolate
(extended conformation)
4

internal enolate
(conformation to give cyclopropane)

4

kinetic alkoxide

2,7-octanedione

4

internal enolate
(conformation to give
5-membered ring)
4

alkoxide from a cyclopentanol

neither the thermodynamic or the kinetic product.

starting material re-drawn

starting material re-drawn

starting material re-drawn

product
(edge shared
7 and 5-membered rings)

product

favored product

favored product
D. Dehydration Of Aldol Products: Aldol Condensations

Homocouplings

Cross Condensations

Featuring One Enolizable Component

intermolecular aldol dehydration to enone

intermolecular aldol

One
one of the components

benzaldehyde and the one added slowly to this would be ethanal.

heterocoupling product
(ie cross coupling)

homocoupling product

$+0 \widehat{\mathrm{OCCl}_{3}} \xrightarrow{\text { base }}$

heterocoupling product (ie cross coupling)

Aldol Condensations Are Hard To Control When Two Enolizable Fragments Are Used

$+$

$+$
homocoupling product 2 (two diastereomers)
$+$

heterocoupling product1

$+$

$+$

$+$

Intramolecular Condensations

