Stereochemistry Illustrated By Carbohydrates

from chapter(s) _____ in the recommended text

A. Introduction

B. Assigning *R*- and *S*-Configurations

C. Stereochemical Representations Of Carbohydrates

are all used to describe compounds in this series. (eg glucose): if they contain an aldehyde they are called aldoses ketoses.

enantiomers. epimers.

triose pentoses, hexose.

be D-. are D-.

THESE ANSWERS ARE FOR THE UPDATED SECOND EDITION.

Extra examples:

D. Carbohydrates Can Cyclize To Hemiacetals Or Hemiketals

(six-membered ring) (five-membered ring

 H^+

protonated pyranose form

protonated furanose form

protonated aldehyde redrawn poised for 5-membered ring formation

protonated aldehyde

pyranose

hexoses to Fischer projections.

is β-.

trans to the -CH₂OH

E. Homologation Of Sugars By Reaction With HCN

imines aldoses

F. Conversion Of Aldoses To Lower Homologs

left right.

Fill in the gaps in the following sequence.

11			ĢNO	
Н—	—он	-HCN	Н—	—ОН
Н—	—ОН		Н—	—ОН
Н—	—ОН		Н—	—ОН
ĊH₂OH			Ċ	CH₂OH

G. Other Reactions Of Sugars oxidized

reducing

H. Relative Stabilities Of Anomers

axial non-bonded

β-anomer σ-to-σ* interactions <u>impossible</u>

α**-anomer** σ-to-σ* interactions <u>possible</u>

I. Di- And Oligosaccharides

acetal or ketal

cellobiose

linkages are: β-1,4

linkage is: α 1, β 2

poly-saccharide, *di*-saccharide. photosynthesis.

J. Carbohydrates In Summary

 β -D-ribofuranose. β -D-2-deoxyribofuranose.