
Heterocycles In Biological Chemistry

from chapter(s) i	in the recommended t	ext
-------------------	----------------------	-----

A. Introduction

B. Names

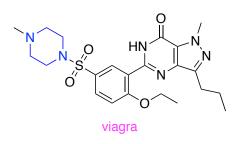
$$\bigvee_{CI}^{N} C$$

2,4-dimethylpyrrole

1-methylindole

2,4-dichloropyrimidine

2-dimethylaminopyridine


1,2-dimethylimidazole

piperazine

1,2-dimethylindole

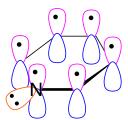
4,5-dichloropyrimidine

pyrrole

piperazine

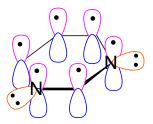
allopurinol

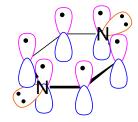
piperidine


piperazine and pyrimidine and pyridine

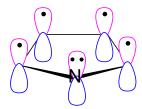
pyrrazole

C. Aromaticity And Basicity Of Heterocycles


Pyridines And Pyrimidines sp² hybridized with a lone pair 1 electron aromatic

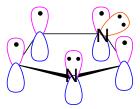

sp² hybridized with a lone pair 1 electron aromatic

sp² hybridized with a lone pair 1 electron aromatic



Pyrrole

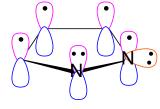
sp² hybridized with 0 can aromatic.


Imidazole

can

are both sp² hybridized, and one

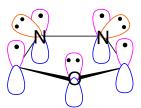
does influence


Pyrazole

cannot are

one

Pyrazole is


aromatic stabilization.

1,3,4-Oxadiazole

sp² hybridized and each contributes 1 sp² hybridized and contributes 2 aromatic.

1,3,4-oxadiazole

does not good base is not lost.

Heterocycles In Nature

$$\begin{array}{c|cccc}
O & N^4: 2 \\
N^3: 2 & N^3: 2 \\
N^4: 1 & N^2: 2 \\
N^4: 1 & N^2: 1
\end{array}$$
caffeine

$$N^{5}$$
: 0 N^{5} : 0 N^{5} : 0 N^{4} : 1 N^{4} : 1 N^{3} : 1 N^{2} : 2 N^{5} : 1 N^{5} : 0 N^{5} : 0 N^{5} : 0 N^{5} : 0 N^{5} : 1 N^{5} : 2 N^{5} : 1 N^{5} : 2

2 pyridine-like nitrogen atoms, 2 **26** π -electrons are aromatic.

2

Hemoglobin chlorophyll

): strongly UV absorbing / fluorescent / capable of redox chemistry.

Aromatic Characteristics Of Protonated Heterocycles

aromatic because it has

aromatic because it has $6 \pi e^{-}$.

not aromatic because it has $4 \pi e^{-}$.

not aromatic because it has

aromatic because it has $6 \pi e^{-}$.

not aromatic because it has $4 \pi e^{-}$.

aromatic because it has

aromatic because it has 10 πe^{-} .

not aromatic because it has 8 πe⁻.

 \mathbb{C}^3

oxazole

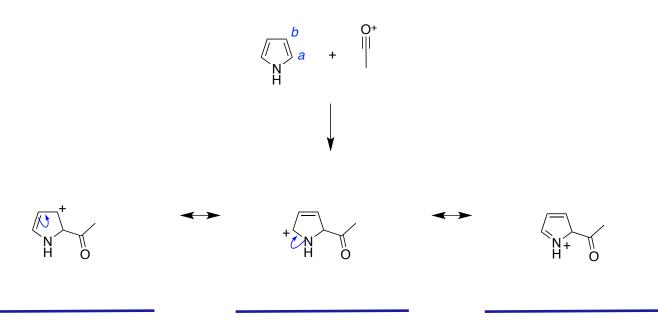
D. Electrophilic Attack On Pyrrole And Indole Compared

Pyrrole

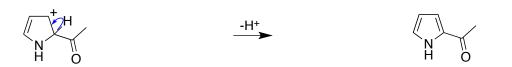
low

in the 2-position

complete diagrams and show arrows


in the 3 position

$$H$$
 B
 $+N$
 H
 H
 H


complete diagrams and show arrows

2-position thermodynamic

Hammond's postulate.

choose correct regiochemistry, show resonance structures, and electron flow that relates them using curly arrows

more electron rich than benzene, hence it reacts faster

least reactive most reactive

Indole

in the 2-position

in the 3 position

donation of the N-lone pair need not disrupt aromaticity of the benzene ring

3-position

because the positive charge can be delocalized onto the nitrogen without disrupting the aromaticity of the benzene, whereas for attack at the 2-position the aromaticity of the benzene must always be disrupted.