1. S_N1 Displacement At sp³ Centers

from chapter(s) _____________ in the recommended text

A. Introduction

B. Fundamentals

 $n =$ number of chiral centers

2ⁿ stereoisomers
possible

 $2^2 = 4$

D. S_N1 Slow Formation Of Carbocations

Key Steps

Substitution describes reactions in which one group *replaces another*.

S_N1 stands for substitution by a nucleophile with first order kinetics.

formation of a carbocation *is* the rate limiting step.

allyl carbocation and hydrogen phosphate

 \mathcal{Q} $HO²$ $O_{\sqrt{2}}$

geraniol hydrogen phosphate

HO^{SP}SO- $-0 \times 0 +$

an allyl carbocation and hydrogen phosphate

only protonation of $O¹$ is stabilized by resonance from the other oxygen.

E. SN1 Fast Combination Of Cations With Nucleophiles

Carbocations *can* combine with negatively charged nucleophiles to produce neutral molecules.

When carbocations combine with *neutral* nucleophiles they form *cations*

the products will be *racemic*, because the intermediate, *sp2 -*hybridized carbocations, are *flat*

S_N1 reaction of *tert*-butyl chloride with water involves *two* intermediates.

S_N1 reaction of *tert*-butyl bromide with acetate (MeCO₂⁻) involves one intermediates.

S_N1 reaction of bromide with allyl chloride involves *one* intermediates.

geranyl phosphate

P O $\int_{0}^{1} 0^{-}$

reaction progress

triphenylmethyl chloride with sodium cyanide proceeds *at the same rate* the if the concentration of the cyanide salt is doubled

G. Carbocation Stabilities Govern SN1 Rates

Rates of S_N1 reactions tend to *increase* with stabilities of carbocation intermediates.

There are 3 times more of these interactions in the ^tBu cation than in Me⁺.

In Et⁺ the sp³ orbitals of the methyl group are tilted a bit *away from* the empty p-orbital of the cation, thus the overlap, and therefore the stabilization, is *less* than a situation in which the orbitals were completely parallel.

system overall is *greater* than that from hyperconjugation in Et⁺.

Allyl cations are *more* stable than many other primary carbocations.

secondary molecular orbital interactions between an *empty* p-orbital and appropriately aligned C-H σorbitals

*on bottom of line show number of p-to-*σ *interactions*

fastest slowest

H. Relative Stereochemistry In S_N1

circle if optically active

circle if optically active

circle if optically active

2. S_N2

from chapter(s) _____________ in the recommended text

A. Introduction

B. Differentiating S_N1 and S_N2

S_N2 describes reactions in which one *replaces another* and *with second order kinetics*. Inversion of configuration is observed in S_N2 processes whereas S_N1

unstable carbocations tend to proceed via S_N 2 pathways. tertiary carbocations often proceed via S_N 1 mechanisms.

C. SN2 Kinetics

product plus by-product

reaction progress

Note: This process does not include an intermediate, and the simultaneous substitution is the slow or rate determining step.

concentration of the nucleophile *doubles*

Reaction of methyl iodide with azide is *accelerated*

A substrate that might react via both S_N1 and S_N2 pathways is *more*

The transition state in a SN2 reaction is *less*

D. SN2 Stereochemistry

Conversion Of Alcohols Into Leaving Groups

Hydroxyl groups *are not* good leaving groups tosylates or mesylates makes them into much *better*

 \circ ^S O O

 e^{S} O O

O $O_{S_{\infty}^{(1)}}$

propyl mesylate

nbutyl mesylate cyclohexyl tosylate ⁱ

Mesyl is an $-S(0)_2$ *Me* group, and mesylate is $-0-SO_2$ *Me*. Tosyl is an $-S(O)_2$ *Ar* group, and tosylate is $-O-SO_2$ *Ar* (where Ar is $-C_6H_4$ -4-Me.

Mesylates and tosylates are *better* leaving groups than hydroxide formed with *retention* of configuration S_N2 processes with complete inversion stereochemistry.

Interconversions Of Enantiomers And Diastereomers

product of one S_N1 and one S_N2 reaction

E. Stereoelectronic Effects

S_N2 reactions occur via approach of a nucleophile

nucleophile in a trigonal bipyramidal *transition state* cannot readily undergo bimolecular nucleophilic

S_N1 displacements involve interaction of a *LUMO* on the substrate with a nucleophile *HOMO*.

In S_N1 reactions the LUMO is *the empty p-orbital of the carbocation*. S_N2 displacements involve interaction of a *LUMO* on the substrate with a nucleophile *HOMO*.

In S_N2 reactions the LUMO is a σ^* orbital.

draw C - I σ^{}-orbitals and orientation of S_N2 displacement by CN⁻*

F. S_N2 Reactions Applied To Make Amides And Amines **Cyanide: A Useful** *C-***Nucleophile**

Phthalimide: Useful *N***-Nucleophile For Syntheses Of Primary Amines**

Using this reaction it is possible to make *primary amines* This so called *Gabriel* synthesis is a *better*

3. Eliminations

from chapter(s) _____________ in the recommended text

A. Introduction

B. E1 Mechanisms

C. E1 Kinetics

the rate of the reaction above *is* proportional to starting material

rate is proportional to $[^tBuOH]$ rate $=$

BuOH] *k* [t

 k ^{[t}BuOH]

Mathematically, the rate of a reaction is approximately given by which of the following equations *C and D*.

 $\Delta G^{\ddagger} = \Delta H^{\ddagger}$ - TΔS‡ = ΔH° - TΔS° **A** B C D

Using a reference text, define the following terms:

 ΔS^{\ddagger} = entropy of activation units Joules*(Kelvin)⁻¹ (J/K)

ΔH[‡] = enthalpy of activation units kiloJoules (kJ)

ΔG° = __Gibbs free energy per mole of reaction at standard conditions (298 K, 100 PkPa, 1M Reactant/Product) units kiloJoules (kJ)

 ΔS^2 = Entropy per mole of reaction at standard conditions units Joules*(Kelvin)⁻¹ (J/K)

 ΔH^2 = Enthalpy per mole of reaction at standard conditions units kiloJoules (kJ)

T = absolute temperature measured in Kelvin

R = __universal gas constant _units __Joules*(Kelvin)^{-1 *}(moles)⁻¹

A = _ pre-exponential factor _ which is a constant representing _ the empirical relationship between rate coefficient and temperature unique to the chemical reaction

 $E_a =$ activation energy for the reaction

The difference between ΔG^{\ddagger} and E_a is E_a is more analogous to ΔH^{\ddagger} which considers the thermodynamic

form of the rate equation, while ΔG^{\ddagger} is the difference between the ground state of reactant and transition

peak with respect to both ΔS‡ and ΔH‡.

Influence Of Carbocation Stabilities

Rates of E1 reactions tend to *increase*

All the carbons in adamantane have *the same* hybridization states.

the adamantane carbocation shown involves *more* ring and bond strain. resembles the configuration around the alkene in *adamantene*; this *is not* a stable conformation.

cation

adamantene

E1 eliminations that result in formation of adamantene *are not* favorable.

Doubling the amount of base *doubles* rates of E2 eliminations.

F. E2 Stereoelectronics

that puts two substituents on *different* sides and *perpendicular*.

H H H H Br H_{ij} H H H $\begin{array}{ccc}\n\mathsf{Ph} & \mathsf{Ph} & \mathsf{Ph} \\
\mathsf{Ph} & \mathsf{Ph} & \mathsf{H}\n\end{array}$ Ph H Br Br Br Ph \diagdown Ph Ph Ph H Br H H t Bu $H₁$ t Bu t Bu t Bu \sum_{Br} t Bu H Br Br ,,^tBu Bu Bu \sim t Bu $\smile t$ Bu t Bu Br H Br Br Br H H Ĥ. H H \mathbf{H} BrBr .
∍Br H ^H ^H H Br Ê

hydrogen that is being deprotonated and the leaving group are *anti*-periplanar.

G. Factors That Favor E1, E2, S_N1, or S_N2

Basicity *vs* **Nucleophilicity**

- (i) strongly basic character of Y-will increase the rate of *E2* relative to *E1* reactions and it will tend to favor *E2* over nucleophilic substitution reactions;
- (ii) weakly basic character of Y-will retard the rate of *E2* relative to *E1* reactions and it will tend to *favor E1* over nucleophilic substitution reactions:
- (iii) less basic character of Y-*will not* affect the rate of E1 eliminations, but it *will not* favor E2 over E1 mechanisms; and,
- (iv) strongly nucleophilic character of Y-will increase the rate of S_N2 relative to S_N1 reactions and it will tend to increase the rates of S_N2 over elimination reactions.

the likelihood of preferential E2 *increases* with the base strength.

Nucleophilicity

- (i) S_N1 relative to S_N2 reactions; and,
- (ii) *E1* over *E2*
- (i) S_N2 relative to S_N1 reactions;
- (ii) *E2* over *E1* reactions.

The following order is approximate. It varies with the HOMO/LUMO match of the nucleophile with the electrophile.

most basic least basic

because HCl the strongest acid, then H3O+ then NH4 + then PhOH (marginally) then H2O then NH3

Temperature And Entropy

$$
\Delta G^{\#} = \Delta H^{\#} \qquad \qquad \text{S}^{\#}
$$

rate determining transition states in $E2$ and S_N2 over $E1$ and S_N1 reactions.

Low temperatures therefore tend to favor $E2$ and S_N2 over $E1$ and S_N1 reactions. *High* temperatures therefore tend to $E1$ and S_N1 over $E2$ and S_N2 reactions.

H. E1cB

removal of 9-fluorenyloxymethyl groups, *ie FMOC* used to protect amines as *carbamates*.

Fluorenyl anions formed in this protection process have $14 \pi e$, and are therefore *aromatic*.

4. Reactions Of Alkenes Via Protonation

from chapter(s) _____________ in the recommended text

A. Introduction

B. Protonation Of Alkenes: forms most stable carbocation

Generation Of Carbocations Via Protonation

Protons are the *simplest* of all electrophiles.

towards one end of the alkene or the other, giving one neutral *sp3* -*hybridized* carbon and a *sp2 -hybridized*

Alkenes oriented perpendicular to a proton represent a *transition* while the carbonium ion is an *intermediate.*

while other trajectories give more stabilization of the developing *sp3 -hybridized* carbon.

A Molecular Orbital Picture Of Alkene Protonation

and when that lower-energy orbital is *more* populated with electron density

A proton *does not* have a highest occupied molecular orbital (HOMO), so only the *LUMO* Thus the *LUMO* of a proton and the *HOMO* of an alkene should be considered when a proton

Perpendicular approach of a proton to a symmetrical π -cloud is net *stabilizing*.

C. Carbocation Stabilities

Valence bond and molecular orbital approaches are *alternative theories to explain bonding in general*. methyl cation due to mixing of the empty p-orbital (*LUMO*)

the filled σ -bonding orbital of a *C-H* bond on the adjacent methyl ($HOMO$).

The σ -orbital brings 2 electrons into the interaction, whereas the p-orbital bears $0 e$, thus the total number of electrons to place in the new molecular orbitals is $\boxed{2}$;

C-H bond on the adjacent methyl can only occur when the orbitals *are in the same plane*.

any instant because the other two *cannot achieve significant orbital overlap.*

A secondary propyl cation has 2 adjacent methyl groups, and therefore 2 3 filled σ - C-H bonds Secondary propyl cations are *more* stable than ethyl or methyl cations because of this

A *tert*-butyl cation has *3* adjacent methyl groups, and therefore *3* filled s- *C-H* bonds that can stabilize by molecular orbital interactions. ^tBu-cations are *more* stable than ethyl or methyl cations because of this.

D. Alkenes Stabilities

Stabilities of most alkenes *increase with* the number of substituents.

Alkenes can only have the *stabilizing* interactions (above) if they have allylic *C* – *H* bonds. Interactions like this explain why more substituted alkenes have *enhanced* stabilities.

most stable least stable
Heats Of Hydrogenation

Energy is *liberated* when hydrogen is added across a *C*=*C* bond.

Energies involved in such processes are called heats of *hydrogenation*.

more stable alkenes will have *lower* heats of hydrogenation than less stable ones.

give the same or very similar products *can* be used to gauge the relative stabilities

reaction progress

reaction progress

b has the higher heat of hydrogenation, while in the diagram on the right it is *b*.

E. Acid-mediated Alkene Isomerization

then lose a proton *from a different carbon* to give a different alkene that *is* an isomer of the first. This reaction may be driven to form the most stable alkene, *ie* by *thermodynamics*.

It is *conceivable* that carbocations can shift groups to isomerize faster than they can lose protons

the most possible carbocation *intermediates* formed by protonation of the following alkenes

Protonation of isoprene at the diene termini (C¹ and C⁴) *gives* a cation stabilized by allylic resonance protonation at the internal positions (*C*² and *C*³) *does not*.

Free energy change for this reaction involves a *small* entropy factor because the number of starting materials *equals* the number of products.

The equilibrium constant featured above is *less than* one.

F. Carbocation Rearrangements

Hydride Shifts

two electrons this is called a *hydride* migration because a proton and two electrons is a *hydride anion*.

preferred one may be predicted by considering the relative stabilities of the carbocations produced: *true*.

Draw curly arrows to describe the following *1,2*-hydride migration reactions, and predict the products.

migration

collisions of protons with *unsymmetrical* alkenes are *most* thermodynamically favorable

Alkyl Shifts

positive charge appears to shift in the *opposite*

Carbocation rearrangements are favorable if the cation formed is *more* stable than the original one. tend to undergo rearrangements if the products are *secondary / tertiary* carbocations secondary ones tend to only migrate to form *tertiary* carbocations.

Show curly arrows for the *1,2*- migration reactions shown below

If the migrating group is an alkyl then these processes can be called *alkyl shift* reactions.

1,2-migration then it is the one *most* able to support a positive charge that shifts preferentially Me because methyl cations are *less* stable than Et⁺ (though it does not actually shift as a complete carbocation, the shift involves a developing positive $Et^{\delta+}$; the group most able to support a positive charge shifts preferentially).

see:<https://youtu.be/FsQb6o510EY>

carbocation intermediate

addition product

Addition of HBr to ethene *does not* proceed in this way.

bromide, being negatively charged, is repelled by electrons in the alkene π -bond

so a positively charged entity, usually a *proton*, must be lost to give a neutral addition product.

H. Acid-mediated Hydration Of Alkenes

less favorable than for most other alkenes because the carbocation formed *1°*.

Hydration of propene could give *two* possible hydration products in which the *H* and *OH* groups become attached to different carbon atoms, *ie regioisomers*;

Reactions which form one regioisomer selectively are called *regioselective*. one chemical functional group in preference to others are called *chemoselective*. one enantiomer in preference to another, and preferential formation of one diastereomer: *enantioselective* and *diastereoselective*

In the absence of water the reverse reaction (alcohol to alkene) would occur via a(n) *E1* pathway.

Predict the products of the following reactions to form *ethers*.

The reactions above *are not* hydration reactions, but they are mechanistically similar.

5. Oxidation States, Hydrogenation, And Hydrogenolysis

from chapter(s) _____________ in the recommended text

A. Introduction

B. Oxidation States Of Functional Groups

Reduction is *addition* of electrons from the substrate, and *loss* from the reducing agent. Oxidation is *e-addition* from the oxidizing agent and *loss* from the substrate.

Cyclohexane is at a *higher* oxidation state than hexane.

C. Dihydrogen Additions

Hydrogenations And Hydrogenolyses Are Different: How?

Hydrogenation involves addition of H₂ across an unsaturated bond without cleaving

Hydrogenolysis involves addition of H₂ across a single bond with cleavage.

Addition of hydrogen to an alkene or an aldehyde can be thought of as proceeding via: (i) *homolytic* cleavage of H_2

Hydrogenolysis is closer to a *radical* mechanism, than a *ionic* one.

hydrogen adds to are inclined to *stabilize* a single electron.

hydrogenolysis of benzyl ethers favorable, because the *benzyl* radical is stabilized by resonance.

Aromatic aldehydes, ketones, and esters are *more* easily hydrogenated than similar aliphatic

Hydrogenations

catalyst

Note: further hydrogenolysis of these products to alcohols is possible, and these may undergo hydrogenolysis to toluene.

does not reduce the base

It tends to be *harder* to remove benzyl groups from amines than from alcohols

benzyl group is connected to the oxygen of a carbamate, *ie* benzyloxycarbonyl or *Cbz*.

D. Double Bond Equivalents

convert ethene and ethyne into ethane requires 1 and 2 molecules of H₂

Conversion of benzene to hexane would require 4 molecules of H₂

For hydrocarbons containing *n* carbon atoms, the DBE *can* be calculated

halogenated hydrocarbons containing *n* carbon atoms, *can* be calculated by replacing the halogen atoms DBEs of acetone and *cis*-1,2-cyclohexandiol are *1* and *1*, respectively.

may be ignored to calculate the DBE, eg acetone C₃H₆O may be considered to be C₃H₆. (*True*, check

DBEs of 3-aminopropene and pyridine ar*1* and *4*

calculating the DBE, *eg* ethylamine C₂H₇N (DBE = 0) may be considered to be C₃H₆. (*True*, check

They *do not* apply when calculating unsaturation between two atoms not including carbon but addition of O and S obviously changes oxidation state but *does not* change DBEs.

E. Hydridic Reductions Are Stepwise

hard

6. Halogenation Of Alkenes

from chapter(s) _____________ in the recommended text

A. Introduction

B. Halonium Intermediates

Like protons, halogens (X_2) tend to approach alkenes or alkynes *perpendicular* to the π -bond an *X - X* bond to become *polarized* until *halide* (X-) and a halonium ion formed.

Halon*ium* ions are *positively* charged; the *–ium* suffix in that name *is* indicative

Chlorination and Bromination: Valence Bond Description

featuring halonium ion *intermediates*.

Halogens (X₂) are *electrophiles* while, because of their π-clouds, alkenes are *nucleophiles*. Bromine, for instance, is an *electrophile* because it *becomes polarized in the presence of high electron density*.

halogenation of alkenes involves rate-limiting *electrophilic* attack of the halogen this is *nucleophilic* attack of the alkene on the bromine. React *faster* than ones that have less or electron withdrawing substituents.

Perpendicular approach of halogens (X_2) to a symmetrical π -cloud is net *stabilizing*, halogenation is the most important orbital overlap so this is called the *primary* interaction.

Halogenation of alkenes is further stabilized by a **secondary** orbital interaction between the π^* -orbitals

Secondary interactions as shown above *do not* favor formation of bromonium ions.

C. Stereospecificities

Cyclic Alkenes

Bromonium ions in bromination of alkenes, tend to be opened by *SN2* attack of bromide Nucleophilic attack on halonium ions occurs *anti* to the halogen atom alkenes within a ring (*ie endocyclic* ones) give *trans*--dihalide products.

Bromination of cyclohexene *mostly* affords the *trans-*-1,2-dibromocyclohexane bromonium ion must occur from the *opposite* face of the bromine atom.

halogenation of *cis*-endocyclic alkenes is therefore *stereospecifically-trans*, meaning it *always* gives the *trans*-product.

Of course, if the product is chiral then a racemate is formed.

other one is formed in *equal* amounts; this is true

Acyclic Alkenes

The products from these two reaction pathways are *identical*.

When *E*- and *Z*-2-butene react with bromine, the products are racemic *enantiomers.*

trans-1,2-dibromophenylethene trans-2,3-dichlorobut-2-ene

D. Iodination

Impact of Revesibility

iodination does not give product because *the product is thermodynamically unstable relative to ethene and iodine.*

E. Kinetic And Thermodynamic Control Kinetic Control

n both diagrams, **B** and **C** must be *lower* energy than **A** and the products *cannot* surmount the energy barrier

The rate of formation of **B** and **C** in this reaction *is not* dependent on the stabilities it *is* dictated by the energy barrier

B:C product ratio will be *1*, and when **C** is more stable than **B** it will be *1*.

B:C ratio will be determined by their relative *rates of formation*, and it will *be invariant* In this case the **B:C** ratio is a *kinetic* one.

Thermodynamic Control

Both Products Equilibrate With Starting Material

A under the reaction conditions, *ie* the process is *reversible* and **B** and **C** have *different* energies **B:C** will be *>1*, and *will* change as the reaction progresses.

 $K_B = [B]/[A]$ and $K_C = [C]/[A]$

At equilibrium, the K_B / K_c ratio *is* another constant, K_{BC}, where

 $K_{BC} = [B] / [C]$

and the **B:C** ratio is *independent of* the concentration of **A**. kinetic and thermodynamic controls are *coincident* insofar as they both

B:C ratio is determined by the relative *activation energy barriers* but at the end it is governed by the relative *stabilities of the products*.

These ratios are *different* but they both favor the same product.

Non-coincident Kinetic And Thermodynamic Control

Least Stable Product Forms Faster and Both Equilibrate With Starting Material

reaction progress

Least Stable Product Forms Faster and It Alone Equilibrates With Starting Material

B forms faster than **C** so it is the *kinetic* product; it forms *reversibly*.

C is the *thermodynamic* product; it forms *reversibly*.

product **B** would *be disfavored* because it will revert as the reaction proceeds and *reversibly* forms **C**.

reaction progress

B forms faster than **C** so it is the *kinetic* product; only **B** forms *reversibly*. **C** is the *thermodynamic* product; it forms *irreversibly*.

product **B** would *not be observed* because it will revert as the reaction proceeds and *irreversibly* forms **C**.

kinetic and thermodynamic control a *kinetic* product would form preferentially in the early stage transformed into a different *thermodynamically* controlled product later.

F. Bromination 1,3-Butadiene

1,2-dibromide forms quickly in the early stages of the reaction, *ie* it is the *kinetic* product.

The amount of 1,2-dibromide *decreases* as the reaction time is extended, and the concentration of 1,4 dibromide *increases*.

the alkene products: *1,4-dibromide has two groups substituted on the alkene product while 1,2-isomer has only one group.*

Nucleophilic attack on alkenes tends to be much *less* favorable than electrophilic attack it *does not* proceed unless there are electron-withdrawing groups

G. Halogenations In Nucleophilic Solvents

Nucleophiles add to the carbon of an unsymmetrical halonium ion that is *best* able to support

*Regio--*selectivity is important when bromination of unsymmetrical alkenes bromide because the reaction can produce different *regioisomers*.

Opening of bromonium or chloronium ions by water is called a *halohydrin* reaction.

the halogen on the carbon least able to support a negative charge because *this is the precursor to the most stable cation*.

Considerations regarding potential carbocation stabilities *are* likely to apply to ring opening of epoxides.
7. Epoxidation And Regioselectivity

from chapter(s) _____________ in the recommended text

A. Introduction

B. Reagents And Mechanism

Bromination of alkenes can be drawn as loss of bromide *pushing* electrons away

bromination epoxidation

general X is leaving group

epoxidation with peracid

Epoxides are *3* membered rings containing oxygen. agents for epoxidation possess a leaving group that *pushes* electrons away becomes more polarized and *electrophilic* as it adds to an alkene.

Reagents

Epoxidation usually involves *electrophilic* attack of an oxidant on an alkene therefore acts as an *electrophile*.

Epoxidation of alkenes is an *addition* reaction.

Mechanisms

Epoxidation With Peracetic acid

►

O O $H \cdot \frac{O}{\epsilon}$

cyclohexene cyclohexene oxide

C. Epoxidation Rates

Epoxidation of these alkenes involves *electrophilic* attack of the agent on the alkene, so alkenes that are *more* electron rich react fastest.

Electron densities around alkenes tend to *increase* with the number of alkyl substituents.

fastest epoxidation slowest epoxidation

D. Stereospecificities

Cyclic Alkenes

the geometry of the double bond is 100 % *conserved* in epoxidation reactions mediated by

In general, epoxidations *cis*-alkenes *always* like those above give the products of *syn-*addition.

Acyclic Alkenes

substituents attached to the epoxide *does* reflect the geometry of the alkene in these reactions, because they are also formed via *syn-* stereospecific additions.

H CH_3 H_3C $\sqrt{}$ H O

DMDO DMDO

 H_3C CH₃ H Y Y H O

trans cis

E. Regioselectivity Of Epoxide Ring Opening Reactions

Neutral Or Basic Conditions

at least two *regioisomeric* products it is largely dictated by *steric* factors.

so they are *regioselective* and not *regiospecific*.

Acidic Conditions

8. Cycloadditions To Alkenes And Alkynes

from chapter(s) _____________ in the recommended text

A. Introduction

B. Cycloaddition Nomenclature

can only be [2 + 1] processes, and *[3 + 2]* / *[1 + 4]* leads to five-membered rings

C. Carbene Additions [2 + 1] (Cyclopropanations)

Reagents that contribute one atom to a ring in cycloadditions must be able to expand their valency by two: *true*.

Carbenes have only *6* electrons in the valence shell of carbon.

expanding the valency of the carbon to *4*.

A leaving group *is not* required in cyclopropanations featuring carbenes.

Carbenes can be sp2 hybridized with *an empty p-orbital*, *ie singlet* forms sp3 hybridized with *a diradical structure*, *ie triplet*

Substances that have two rings sharing a single carbon are called *spiro*.

D. Ozonolysis [2 + 3]

It smells like *a sea breeze / don't smell it, it's highly toxic*

Treatment with ozone, *ie ozonolysis*, then quenching the produce with a mild reducing agent cleaves alkenes to give *aldehydes / ketones* at either terminus

This reducing agent can be *Me2S / PPh3 / Zn dust* (dimethyl sulfate cannot be a reducing agent)

A retro-[2 + 3] is a *ring cleavage to 2 and 3 atoms components*.

 $DMSO$ is $Me₂SO$

ozonolysis reactions may be *reduced* to alcohols if the mixture is treated with sodium borohydride, or *oxidized* to acids if treated with hydrogen peroxide.

E. *syn***-Dihydroxylation [2 + 3]**

A dihydroxylation adds __2__ hydroxyl groups to an alkene.

Dihydroxylation with osmium tetroxide is stereospecifically *syn*

This is *unlike* generation of diols via epoxidations which gives net *anti* addition

N O

N O O

trimethylamine-N-oxide NMO

(Of course, both enantiomers form in both the problems shown on this page.)

The products of the two reactions above are *diastereomers*

Periodate Cleavage

The iodine of periodic acid (HIO₄) is in the⁺⁷ oxidation state; it is *reduced* in this reaction to HIO₃ which is in the *+5* oxidation state.

F. Azide-Alkyne "Click Reactions" [2 + 3]

A terminal alkyne is a *C – C* triple bond *at the end of a chain*.

Heating organic azides and terminal alkynes together causes them to undergo *[3 + 2]*

1,4-cycloaddition product, *ie* the reaction becomes 100% *regiospecific*

many different organic functionalities, but *none* of them react quickly with azides or with alkynes.

ie this type of click reaction is *chemoselective*.

the ideal geometry around the "red dot carbons" is *180 °*, whereas in the triazole product it is *120°*.

and this is called the heat of *hydrogenation* for that substrate. liberates most heat in this reaction is the *most* strained, *ie* cyclopropyne. changes alkyne *sp*-hybridized carbons to *sp3* , thereby making those carbon atoms *more* able to fit alkyne *sp*-hybridized carbons to *sp2* , thereby making those carbon atoms *more* able to fit

Reactions like these *do not* need copper salts to proceed at room temperature

on the cell surface, can be observed using *confocal microscopy*.

When dienes undergo [4 + 2] cycloadditions, they must be in *s-cis* conformations. conformation about the *σ-bond* that connects the *π-bonds*.

s-cis and *s-trans* conformations *are* in rapid equilibrium at room temperature.

the monoalkene is called the *dienophile* meaning it *loves* dienes.

ie the dienophile adds to *the same* face(s) of the *s-cis* diene conformation. This is called *suprafacial*.

regioisomer 1

regioisomer 2

*exo***- and** *endo***-Additions**

Consequently, the *endo*-isomer is the *kinetic* product, and the *exo*- will predominate at extended reaction pure isomer can be isolated in the *late* stages of the reaction and the equilibrium is adjusts to *favor*

draw in a suitable conformation

1,3-butadiene gives *4* molecular orbitals of which the lowest energy *2* are filled with two electrons each.

HOMO-LUMO overlap such as that shown above are called *frontierorbital* interactions.

Charge in the *HOMO* redistributed to the compensate for the lack of it in the *LUMO* drives these reactions to occur.